Return to search

The Computer Simulation of Phosphate Removal from Wastewater Using Lime

<p> A simplistic equilibrium, computer model was devised to simulate the removal of orthophosphates from wastewater. The components of the model were calcium, magnesium, carbonate and orthophosphate present as simple hydrated ions, ligands, acid-base dissociation products, ion pairs, ion pair complexes, ion complexes and precipitates. Data from laboratory experiments were tested in the model to determine the apparent activity products of calcite, hydroxyapatite, tricalcium phosphate and brucite. The results indicated a degree of supersaturation of hydroxyapatite between 15 to 20 orders of magnitude dependent on the
aqueous species included in the calculations. The apparent pKsp values for different sets of data showed the mean ranging from 95 to 102.5 with standard deviations 2 to 5. The
inclusion of the aqueous ion complexes Ca2·HPO4·CO^o 3 and Ca2·PO4·CO- 3 when calculating the apparent activity products results in a pKsp of 102.5 which varies little with pH or the presence of magnesium. The solubility of tricalcium phosphate varies more with pH than hydroxyapatite, a mean pKsp of 26.8 was calculated which compares favourably with the pKsp of 27.0 quoted in the literature. The apparent activity product of brucite was strongly dependent on pH while that of calcite was extremely variable. When hydroxyapatite precipitated, there was a minimum residual phosphate between pH 8.5 - 9.0, followed by an increase of phosphates in solution due to calcium being removed by the precipitation of calcite. Beyond pH 10, the phosphate concentration in solution decreased rapidly as there was an increase in the precipitation of hydroxyapatite coupled with a decrease of calcite. Under identical initial conditions, the precipitation of tricalcium phosphate compared to hydroxyapatite resulted in similar orthophosphate residuals. The use of the apparent activity products compared to literature solubility products results in 2 to 3 orders of magnitude greater phosphate residuals in solution.</p> / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/20825
Date05 1900
CreatorsWitteman, John P.
ContributorsKramer, J. R., Geology
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0014 seconds