Return to search

Phosphoethanolamine-Complexed C-Reactive Protein: A Pharmacological-Like Macromolecule That Binds to Native Low-Density Lipoprotein in Human Serum

Background: C-reactive protein (CRP) is an acute phase plasma protein. An important binding specificity of CRP is for the modified forms of low-density lipoprotein (LDL) in which the phosphocholine-binding sites of CRP participate. CRP, however, does not bind to native LDL. Methods: We investigated the interaction of CRP with native LDL using sucrose density gradient ultracentrifugation. Results: We found that the blocking of the phosphocholine-binding sites of CRP with phosphoethanolamine (PEt) converted CRP into a potent molecule for binding to native LDL. In the presence of PEt, CRP acquired the ability to bind to fluid-phase purified native LDL. Because purified native LDL may undergo subtle modifications, we also used whole human serum as the source of native LDL. In the presence of PEt, CRP bound to native LDL in serum also. The effect of PEt on CRP was selective for LDL because PEt-complexed CRP did not bind to high-density lipoprotein in the serum. Conclusions: The pharmacologic intervention of endogenous CRP by PEt-based compounds, or the use of exogenously prepared CRP-PEt complexes, may turn out to be an effective approach to capture native LDL cholesterol in vivo to prevent the development of atherosclerosis.

Identiferoai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etsu-works-18684
Date01 August 2008
CreatorsSingh, Sanjay, Suresh, Madathilparambil V., Prayther, Deborah C., Moorman, Jonathan P., RusiƱol, Antonio E., Agrawal, Alok
PublisherDigital Commons @ East Tennessee State University
Source SetsEast Tennessee State University
Detected LanguageEnglish
Typetext
SourceETSU Faculty Works

Page generated in 0.0011 seconds