Die kosmische Nukleosynthese 35 protonenreicher stabiler Nuklide zwischen Selen und Blei kann nicht durch Neutroneneinfangprozesse erklärt werden. Es wird angenommen, dass diese Kerne in explosiven Szenarien, wie Supernova-Explosionen durch Protoneneinfang oder Photodesintegrationsprozesse, erzeugt werden, jedoch sind die solaren Häufigkeiten dieser sogenannten p-Kerne noch nicht verstanden. Der p-Kern mit der größten Isotopenhäufigkeit, 92Mo, wird in Nukleosynthese-Netzwerkrechnungen deutlich unterproduziert.
Eine mögliche Ursache könnten unpräzise Reaktionswirkungsquerschnitte sein, da die meisten Wirkungsquerschnitte nur aus Modellrechnungen bekannt sind. Daher war es naheliegend, die Photodesintegrationswirkungsquerschnitte von 92Mo mit der Methode der Photoaktivierung an der Strahlungsquelle ELBE im Forschungszentrum Dresden-Rossendorf zu überprüfen.
Durch die hohe Intensität der Bremsstrahlung von bis zu 10^9 MeV^-1cm^-2s^-1 im Energiebereich bis zu 20 MeV konnten im Rahmen dieser Arbeit erstmals nicht nur die (γ,n)-, sondern auch die (γ,p)-Reaktionen an 92Mo bei astrophysikalisch relevanten Energien untersucht werden. Durch die Messungen an zwei Bestrahlungsplätzen konnten systematische Unsicherheiten reduziert werden. Insbesondere wurde eine präzise Bestimmung der Photonenfluenz vorgenommen: Am Kernphysikmessplatz erfolgte die Bestimmung mittels Kernresonanzfluoreszenz an 11B. Im Elektronenstrahlfänger wurde die Photodesintegrationsreaktion 197Au(γ,n) zur Normierung der Photonenfluenz verwendet, nachdem sie zuvor am Kernphysikmessplatz überprüft wurde.
Die Reaktion 92Mo(γ,n)91mMo, mit einer Halbwertszeit des Endkerns von 65 s, war dank einer Rohrpost zugänglich, mit der die Proben in weniger als 10 s von der Bestrahlungsstation zum Zerfallsmessplatz transportiert werden können. Die Messungen dieser Arbeit bestätigen im wesentlichen die Hauser-Feshbach-Modellrechnungen bezüglich der Photodesintegrationsreaktionen (γ,n) und (γ,p). Die Unterproduktion der Mo- und Ru-Isotope ist daher nicht erklärbar durch ungenaue Wirkungsquerschnitte. Zur Nukleosynthese dieser Kerne müssen andere astrophysikalische Prozesse, z.B. neutrinoinduzierte Reaktionen beitragen.
Die gemessenen Photoaktivierungsausbeuten haben eine hohe Empfindlichkeit auf die Photonenstärkefunktion. ÄAnderungen der Dipolriesenresonanzparameter wirken sich stärker auf berechnete Ausbeuten aus, als ÄAnderungen der Kernniveaudichte oder der Parameter des optischen Modells. Durch gleichzeitige Messung der Photodesintegration am Kern 100Mo konnten Unsicherheiten in der Normierung von Photoneutronenexperimentdaten aus der Positronenannihilation im Flug geklärt werden.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:d120-qucosa-124711 |
Date | 01 October 2013 |
Creators | Erhard, Martin Andreas |
Contributors | Helmholtz-Zentrum Dresden-Rossendorf, |
Publisher | Forschungszentrum Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:report |
Format | application/pdf |
Relation | dcterms:isPartOf:Wissenschaftlich-Technische Berichte / Helmholtz-Zentrum Dresden-Rossendorf; HZDR-038 |
Page generated in 0.0026 seconds