Return to search

Molecular Electronic Structure via Photoelectron Imaging Spectroscopy

This dissertation explores the use of photoelectron imaging spectrometry to probe the molecular electronic structure of various chemical systems, with an emphasis on photoelectron angular distributions. Experimental ion generation, mass selection, laser photodetachment, and photoelectron ion imaging were all done in a photoelectron imaging spectrometer described in detail. Results from simplistic systems, OH- and CH-, are used to illustrate the general and fundamental capabilities of imaging spectroscopy and angular distributions. This illustration is then expanded when both qualitative and quantitative analyses of photoelectron angular distributions are used to aid in the understanding of the electronic structure of several heterocyclic aromatic systems. First a qualitative analysis aids in the exploration of the electronic structure of thiophenide, C₄H₃S⁻, and furanide, C₄H₃O⁻. Ground and excited C₄H₃S and C₄H₃O radical states are observed, and bond dissociation energies are defined. Next, a new model used to qualitatively analyze photoelectron angular distributions resulting from mixed s - p hybrid states is presented and applied to detachment from pyridinide, C₅H₄N⁻; as a benchmark system. Before further exploring this model, the synthesis of several deuterated heterocyclic compounds is presented in order to determine the experimentally produced systems in our experimental setup. The electronic structure of the resultant molecules oxazolide, C₃H₂NO⁻, and thiazolide, C₃H₂NS⁻; are then investigated. Using this new qualitative model, the mixed s - p states model, to evaluate the angular distributions of the systems, the hybridization of the anion molecular orbitals is probed. Comparison of the photoelectron angular distributions that are modeled for each heterocyclic aromatic system yields several trends relating aromatic stabilization, molecular hybridization, and bond dissociation energies. A new qualitative model is then presented to evaluate photoelectron angular distributions resulting from mixed p - d states and applied to detachment from NO⁻. Finally, new ideas and directions are proposed.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/301677
Date January 2013
CreatorsCulberson, Lori
ContributorsSanov, Andrei, Monty, Oliver, Brown, Michael, Stafford, Charles, Sanov, Andrei
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0013 seconds