<p>In this thesis we have performed core-electron spectroscopy studies of gas phase molecular systems starting with smaller diatomic, continuing with triatomic and extending our research to more complex polyatomic ones. We can subdivide the results presented here into two categories: the first one focusing on electronic fine structure and effect of the chemical bonds on molecular core-levels and the other one dealing with nuclear dynamics induced by creation of a core hole. In our research we have mostly used synchrotron radiation based techniques such as X-ray Photoelectron (XPS), X-ray Absorption (XAS), normal and Resonant Auger (AES and RAS, respectively) and Energy-Selected Auger Electron PhotoIon COincidence (ES-AEPICO) spectroscopies.</p><p>We have demonstrated that resonant Auger spectroscopy can be used to aid interpretation of the features observed in XAS for Rydberg structures in the case of Cl<sub>2</sub> and C1s<sup>−1</sup>π*<sup>1</sup> states of allene molecules. The combined use of high-resolution spectroscopy with <i>ab initio</i> calculations can help the interpretation of strongly overlapped spectral features and disentangle their complex profiles. This approach enabled us to determine the differences in the lifetimes for core-hole 2p sublevels of Cl<sub>2</sub> which are caused by the presence of the chemical bond. We have shown that contribution in terms of the Mulliken population of valence molecular orbitals is a determining factor for resonant enhancement of different final states and fragmentation patterns reached after resonant Auger decays in N<sub>2</sub>O.</p><p>We have also performed a systematic study of the dependence of the C1s resonant Auger kinetic energies on the presence of different substituents in CH<sub>3</sub>X compounds. For the first time we have studied possible isomerization reaction induced by core excitation of acetylacetone. We could observe a new spectral feature in the resonant Auger decay spectra which we interpreted as a signature of core-excitation-induced keto-enol tautomerism.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:uu-8904 |
Date | January 2008 |
Creators | Travnikova, Oksana |
Publisher | Uppsala University, Department of Physics, Uppsala : Acta Universitatis Upsaliensis |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, text |
Relation | Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 1651-6214 ; 442 |
Page generated in 0.0019 seconds