Return to search

Optische Spektroskopie zum Nachweis von Schimmelpilzen und deren Mykotoxine / Optical spectroscopy for the determination of mould and mycotoxins

Gesunde sowie qualitativ hochwertige Nahrungsmittel sind wichtige Voraussetzungen, um einerseits die Lebensmittelsicherheit entlang der Wertschöpfungskette (Wachstum, Verarbeitung, Lagerung und Transport) und andererseits einen vorbeugenden Verbraucherschutz zu gewährleisten. Die Belastung der Nahrung mit Rückständen jeglicher Art war in letzter Zeit häufig Mittelpunkt heftiger öffentlicher Diskussionen. Zahlreiche Untersuchungen haben gezeigt, dass unter bestimmten Bedingungen durch Pilze gebildete Giftstoffe, so genannte Mykotoxine, die Ernteprodukte belasten und es bei deren Verzehr durch Menschen oder Tiere zu Vergiftungen kommen kann.
Die FAO schätzt, dass etwa 25% der Weltproduktion von Nahrungsmitteln mit Mykotoxinen kontaminiert und in 20% der Getreideernte der Europäischen Union messbare Konzentrationen an Mykotoxinen detektierbar sind. Damit die Lebensmittelsicherheit weiterhin gewährleistet bleibt, werden neben den Routinemethoden schnellere und zerstörungsfreie Methoden benötigt, um die Lebensmittel direkt vor Ort auf Schimmelpilze und deren Mykotoxine zu untersuchen.
In dieser Arbeit wird das Potenzial von ausgewählten optisch-basierten spektroskopischen Methoden für die in-situ bzw. in-line Detektion von Schimmelpilzen sowie Mykotoxinen in Getreide(produkten) untersucht. Es werden Absorptions- und Reflexionsmethoden einerseits und Fluoreszenztechniken andererseits eingesetzt. Die spektroskopischen Methoden werden dabei auf Proben unterschiedlicher Komplexität angewandt - beginnend mit der Untersuchung der photophysikalischen Eigenschaften der reinen Mykotoxine in Lösung über künstlich mit verschiedenen Mykotoxinen kontaminierten Getreideproben bis hin zu mit Pilzen befallenem Getreide und hochveredelte Lebensmittel (Wein und Bier) als Proben höchster Komplexität. / Problems of food safety have led to an increasing concern regarding contamination of foods and feeds with mycotoxins and the relevant toxigenic fungi, mainly Aspergillus, Penicillium and Fusarium genera. There is a real need for rapid, sensitive and inexpensive sensors for the detection of toxigenic fungi and mycotoxins, both in the field and after harvest in order to obtain real-time monitoring data on contamination and this assist in food safety assessment. This will result in an enormous cost saving to the farmers as well as to agro-food industry through the prevention and reduction of product recalls and reduced treatment costs.
The German Ministry of Education and Research (BMBF) has provided funding of more than 1.9 million Euros from July 2006 to December 2009 for the large joint project "ProSeso.net2" on the development of innovative sensor-based techniques and processes in the field of food quality and safety. In this research-project "Exploration of sustainability potentials by use of sensor-based technologies and integrated assessment models in the production chain of plant related food" 13 partners from universities, non-university institutions and industry cooperate within seven subprojects. The expected results shall contribute to maintain freshness and improve safety of the food production chain.
In the subproject “Indicators and sensor technology for the identification of mycotoxin producing fungi in the processing of grain” spectroscopic methods are tested for in-situ and in-line detection of moulds and/or mycotoxins.
This presentation focuses on some possible spectroscopic methods for the rapid detection of mycotoxins and fungi on grains. Methods based on one- and two-photon-induced fluorescence spectroscopy are highly attractive because of their outstanding sensitivity and selectivity. In order to utilize a fluorescence technique for the analysis of the mycotoxins in food and feedstuff as well as for basic research on the fungal metabolism, the photochemistry and photophysics of the mycotoxins and fungi need to be elucidated in detail, especially the influence of solvent parameters such as polarity and pH value. Consequently, for a sensitive and selective spectroscopic analysis, it is indispensable to take the specific photophysic of the known mycotoxins into account in order to minimize serious limitations upon sensitivity, selectivity, and accuracy of a potential fluorescence-based sensing application.
The spectroscopic techniques are complemented by chemometric tools (Principle Component Analysis) to extract the desired chemical information, e.g. with respect to presence of contaminations. The combination of data obtained from different spectroscopic methods (such as optimal excitation and emission wavelength, fluorescence decay times, and fluorescence quantum efficiency) on the one hand side and NIR spectroscopy on the other side shows promising results for the qualitative as well as quantitative identification of mycotoxins grains. Moreover, NIR reflectance spectra yield additional information on ingredients, moisture content, and the presence (or absence) of fungi in the sample.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:5074
Date January 2010
CreatorsRasch, Claudia
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Chemie
Source SetsPotsdam University
LanguageGerman
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/

Page generated in 0.0023 seconds