Return to search

MACE CT Reconstruction for Modular Material Decomposition from Photon-Counting CT Data

<p dir="ltr">X-ray computed tomography (CT) based on photon counting detectors (PCD) extends standard CT by counting detected photons in multiple energy bins. PCD data can be used to increase the contrast-to-noise ratio (CNR), increase spatial resolution, reduce radiation dose, reduce injected contrast dose, and compute a material decomposition using a specified set of basis materials [1]. Current commercial and prototype clinical photon counting CT systems utilize PCD-CT reconstruction methods that either reconstruct from each spectral bin separately, or first create an estimate of a material sinogram using a specified set of basis materials and then reconstruct from these material sinograms. However, existing methods are not able to utilize simultaneously and in a modular fashion both the measured spectral information and advanced prior models in order to produce a material decomposition. </p><p dir="ltr">We describe an efficient, modular framework for PCD-based CT reconstruction and material decomposition using Multi-Agent Consensus Equilibrium (MACE). Portions of this dissertation appear in [2]. Our method employs a detector proximal map or agent that uses PCD measurements to update an estimate of the path length sinogram. We also create a prior agent in the form of a sinogram denoiser that enforces both physical and empirical knowledge about the material-decomposed sinogram. The sinogram reconstruction is computed using the MACE algorithm, which finds an equilibrium solution between the two agents, and the final image is reconstructed from the estimated sinogram. Importantly, the modularity of our method allows the two agents to be designed, implemented, and optimized independently. Our results on simulated data show a substantial (2-3 times) noise reduction vs conventional maximum likelihood reconstruction when applied to a phantom used to evaluate low contrast detectability. Our results with measured data show an even higher reduction (2-12 times) in noise standard deviation. Lastly, we demonstrate our method on a Lungman phantom that more realistically represents the human body. </p>

  1. 10.25394/pgs.26356348.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/26356348
Date24 July 2024
CreatorsNatalie Marie Jadue (19199005)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/MACE_CT_Reconstruction_for_Modular_Material_Decomposition_from_Photon-Counting_CT_Data/26356348

Page generated in 0.003 seconds