Cavity quantum electrodynamics provide a platform to form a quantum network which connects individual quantum bits (qubits) via photon. Optical cavity, a device which traps photons in a confined volume can enhance the interaction between photons and the qubits serves as fundamental building block for a quantum network. Nitrogen vacancy (NV) centers in diamond has emerged as one of the leading solid-state qubits because of its long spin coherence time and single photon emission properties at room temperature. Diamond optical micro-cavities are highly sought after for coupling with NV centers. Fabrication of optical cavities from nano-crystalline diamond film has been demonstrated previously. The quality factor (Q) of such devices was limited by the material properties of the nano-crystalline diamond film. Fabrication of single-crystal diamond photonic cavities is challenging because there is no trivial way to form thin diamond film with optical isolation. In this thesis, we describe an approach to fabricate high quality single-crystal diamond optical cavities for coupling to NV centers in diamond. ingle-crystal diamond membranes were generated using an ion-slicing method. Whispering gallery modes were observed for the first time from microdisk cavities made from such material. However, the cavity Q (∼ 500) was limited by the ion damage created during processing. By using an homo-epitaxial overgrowth method, a high quality diamond film can be grown on the ion damaged membranes. Microdisk cavities with Q ∼ 3,000 were fabricated on these improved materials. Diamond membranes with a delta-doped layer of NV can be made using a slow overgrowth process which demonstrate the position and density of NV centers can be controlled in these membranes. Photonic crystal cavities with Q ∼ 4,000 were fabricated from the delta-doped membranes with cavity resonance near the zero phonon line of NV centers. Different color centers can also be introduced during the overgrowth process, and optical coupling of an ensemble of silicon vacancy centers is demonstrated by coupling to a diamond microdisk cavity. We believe the techniques developed in this thesis could contribute to building of a quantum photonic network using diamond as a platform. / Engineering and Applied Sciences
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11064635 |
Date | 19 September 2013 |
Creators | Lee, Jonathan Chaosung |
Contributors | Hu, Evelyn |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0017 seconds