Return to search

Power Scaling of High Power Solid State Lasers.

The solid-state laser is one of the most widely used lasers in scientific research and industrial applications. This thesis describes detailed investigations of two modern architectures of high power cw solid-state lasers, a 20 W diode-pumped Yb:YAG thin disc laser and 300 W diode-pumped Nd:YAG rod laser. With the thin disc laser architecture, the signal beam must fit to the pump area on the disc defined by the multi-pass diode pump configuration. The beam propagation, beam diameter, phase and thermal effects for various cavity configurations are investigated theoretically and experimentally. In addition, the internal loss, small signal gain, and thermal lensing effect are essential properties to construct the laser system but usually unknown. The theories and methodologies to obtain these properties are presented and the experimental results are compared. In a second phase of the project, the multi-mode and single-mode operation of a high power diode-pumped rod laser system are examined and compared to the thin disc system. Thermal effects on the phase, beam quality and brightness are examined and future applications and improvements considered.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-7087
Date01 January 2018
CreatorsOh, Bumjin
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0021 seconds