Supramolecular chemistry allows the rapid formation of complex systems through self-assembly. These systems often possess unique properties not observed for conventional covalent constructs and have potential applications in areas such as sensing, drug delivery and catalysis. Metallosupramolecular container compounds have been shown to catalyse reactions with both regio- and stereo-selectivity in methods analogous to enzyme type catalysis. Separately, visible-light photoredox catalysis has recently gained considerable interest as an efficient, green and mild method for the rapid synthesis of many chemical compounds. In order to combine the favourable properties of both supramolecular catalysis and visible-light photoredox catalysis, a number of photoredox active metallosupramolecular assemblies were designed, synthesised and analysed. Initial steps were taken to stabilise a known iridium-based M6L4 luminescent cage compound to allow guest encapsulation to take place. The incorporation of isocyanide donors as strong ligands improved the stability of model compounds but synthesis of an analogous three-dimensional assembly was unsuccessful. Instead, a “complex-as-ligand” approach was taken that allowed the straight-forward formation of Pd2L4 systems from a range of photoactive iridium complexes. Importantly, unlike many other photoactive systems, the complexation to palladium did not drastically affect the photoredox properties of the constituent iridium complexes. Multiple approaches were then taken to improve both the stability and guest binding properties of the photoactive assembly in an effort to achieve supramolecular photoredox catalysis. Utilising a model system, a general method was thus developed for enhancing the association constants of neutral guests in organic solvents by switching to large, non-coordinating counter ions that provided reduced competition for the internal binding site. In combination with this increased binding affinity, a range of guest properties were adjusted by association with the hydrogen bond donor environment of the internal cavity. The encapsulation of quinone based oxidants led to unexpected and novel reaction pathways not observed in the bulk phase. As such, this work represents a significant advancement in development of metallosupramolecular systems capable of regio- and stereo-selective photoredox catalysis.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:723936 |
Date | January 2017 |
Creators | August, David Philip |
Contributors | Lusby, Paul ; Lam, Hon |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/23644 |
Page generated in 0.0019 seconds