Return to search

Les propriétés photoélectroniques de vitrocéramique de chalcogénures / The photoelectronic properties of chalcogenide glass ceramic

Une nouvelle famille de vitrocéramiques, avec une microstructure inédite, a été fabriquée par une cristallisation contrôlée des verres dans le système GeSe2-Sb2Se3-CuI. L'influence de la composition et du processus de cristallisation des verres de base, sur la microstructure et sur l’intensité du photo-courant des vitrocéramiques a été étudiée. Une composition optimisée, le 40GeSe2-40Sb2Se3-20CuI, a été particulièrement étudiée avec des résultats suivants: (1) Après une étude systématique , il a été constaté que cette composition donne la plus forte intensité de photo-courant parmi tous les verres étudiés dans ce système pseudo-ternaire GeSe2-Sb2Se3-Cul. Il a été également démontré que le photo-courant généré par différentes vitrocéramiques est non seulement déterminé par la composition, mais aussi par la microstructure composite de la vitrocéramique, qui est déterminée par le processus de céramisation. Ce processus de céramisation a ensuite été optimisé. Par rapport au procédé de traitement thermique en deux étapes, le procédé en une seule étape à basse température est une stratégie plus appropriée pour obtenir une microstructure efficace, favorisant la séparation des charges, construisant des canaux conducteurs et donnant une intensité de photo-courant élevée dans la vitrocéramique. (2) La microstructure composite inédite, discutée ci-dessus est composée de micro-domaines conducteurs interconnectés, formées par des cristaux Sb2Se3 faiblement conducteur en forme de tiges, couverts par des nano-cristaux de Cu2GeSe3 beaucoup plus conducteurs. Le procédé le plus probable de la photo-génération efficace des charges est le suivant: les photons sont efficacement et essentiellement absorbés par Sb2Se3 ainsi que par Cu2GeSe3. Les hétérojonctions formées par les Sb2Se3 du type n et les Cu2GeSe3 du type p, favorisent la séparation de charges, tandis que les Cu2GeSe3 interconnectées et conductrices fournissent des canaux conducteurs et jouent ainsi le rôle de collecteur efficace de charges. Il en résulte ainsi une très longue durée de vie des porteurs de charge et un fort photo-courant. (3) La formation de nano-hétérojonctions entre les cristaux Sb2Se3 et Cu2GeSe3 dans un seul micro-domaine peut conduire à une séparation efficace des électrons et des trous photo-générés. Par conséquent, pour application photo-catalytique, il n’est pas nécessaire de former des canaux conducteurs (conducteurs interconnectés des micro-domaines) dans l'ensemble de la vitrocéramique. De plus, la formation de ces canaux conducteurs, nécessiterait une augmentation de la durée ou/et la température de recuit, pouvant conduire à une diminution de l'activité photo-catalytique à cause de la taille relativement grande des grains cristallins. Les vitrocéramiques optimisées montrent une bonne capacité de désamination oxydative et une forte activité photo-catalytique en général, démontrant ainsi son potentiel en tant que photo-catalyseur efficace. / A totally new family of glass ceramics with a unique microstructure was fabricated by controlling the crystallization of the GeSe2-Sb2Se3-CuI glass system. The influences of the material composition and the crystallizing process of the precursor glasses on the microstructure and photocurrent of the prepared glass ceramics were investigated. An optimized composition, 40GeSe2-40Sb2Se3-20CuI, was particularly studied with the following significant results: (1) After a systematic study, it was found that this particular composition shows the highest photocurrent density among all studied glasses in the pseudo-ternary GeSe2-Sb2Se3-CuI system. It is also demonstrated that the photocurrent generated by different glass ceramics is not only determined by the composition, but also by the composite microstructure of the glass ceramic, which is determined by the ceramisation process. This process was then carefully studied. Compared with the two-step heat treatment process, the single-step process at a low temperature is a more efficient strategy to build up an efficient composite microstructure, which promotes charge carrier separation and provides a conductive channel, leading to a high photocurrent intensity in the glass ceramic. (2) The above-mentioned unique composite microstructure is composed of interconnected conductive microdomains, formed by low conductive rod-like Sb2Se3 crystals, covered by relatively high conductive Cu2GeSe3 nanocrystals. The most likely process for efficient photogeneration of charges is proposed as follows: photons are efficiently and essentially absorbed by Sb2Se3 as well as by Cu2GeSe3, and then the heterojunction formed by n-type Sb2Se3 and p-type Cu2GeSe3 promotes the charge separation, whereas the oriented and relatively conductive Cu2GeSe3 aggregate provides a conductive channel and plays the role of efficient charge collector. This structure results in exceptionally long lifetime of charge carriers (around 16 µs) and high photocurrent (at least 100 times higher than any of Sb2Se3 and Cu2GeSe3 individually). (3) The formation of nano-heterojunctions between Sb2Se3 and Cu2GeSe3 crystals within a single conductive microdomain can fully lead to an efficient separation of photo-generated electrons and holes. Therefore, for the photocatalytic application, it is unnecessary to form conductive channels (interconnected conductive microdomains) in the whole glass ceramic. Moreover, in order to form conductive channels, the necessary increase of annealing time or/and temperature may decrease the photocatalytic activity due to its relatively large crystal grain size. The optimized glass ceramic exhibits a good oxidative deamination ability and high photocatalytic activity, demonstrating its potential as an efficient photocatalyst.

Identiferoai:union.ndltd.org:theses.fr/2014REN1S037
Date05 September 2014
CreatorsXu, Yang
ContributorsRennes 1, Zhang, Xiang Hua, Lafond, Alain
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.003 seconds