Return to search

Electron acceleration in a flare plasma via coronal circuits

The Sun is a star, which due to its proximity has a tremendous influence on Earth. Since its very first days mankind tried to "understand the Sun", and especially in the 20th century science has uncovered many of the Sun's secrets by using high resolution observations and describing the Sun by means of models.

As an active star the Sun's activity, as expressed in its magnetic cycle, is closely related to the sunspot numbers. Flares play a special role, because they release large energies on very short time scales. They are correlated with enhanced electromagnetic emissions all over the spectrum. Furthermore, flares are sources of energetic particles. Hard X-ray observations (e.g., by NASA's RHESSI spacecraft) reveal that a large fraction of the energy released during a flare is transferred into the kinetic energy of electrons. However the mechanism that accelerates a large number of electrons to high energies (beyond 20 keV) within fractions of a second is not understood yet.

The thesis at hand presents a model for the generation of energetic electrons during flares that explains the electron acceleration based on real parameters obtained by real ground and space based observations.
According to this model photospheric plasma flows build up electric potentials in the active regions in the photosphere. Usually these electric potentials are associated with electric currents closed within the photosphere. However as a result of magnetic reconnection, a magnetic connection between the regions of different magnetic polarity on the photosphere can
establish through the corona. Due to the significantly higher electric conductivity in the corona, the photospheric electric power supply can be closed via the corona. Subsequently a high electric current is formed, which leads to the generation of hard X-ray radiation in the dense chromosphere.

The previously described idea is modelled and investigated by means of electric circuits. For this the microscopic plasma parameters, the magnetic field geometry and hard X-ray observations are used to obtain parameters for modelling macroscopic electric components, such as electric resistors, which are connected with each other. This model demonstrates that such a coronal electric current is correlated with large scale electric fields, which can accelerate the electrons quickly up to relativistic energies.

The results of these calculations are encouraging. The electron fluxes predicted by the model are in agreement with the electron fluxes deduced from the measured photon fluxes. Additionally the model developed in this thesis proposes a new way to understand the observed double footpoint hard X-ray sources. / Die Sonne ist ein Stern, der aufgrund seiner räumlichen Nähe einen großen Einfluss auf die Erde hat. Seit jeher hat die Menschheit versucht die "Sonne zu verstehen" und besonders im 20. Jahrhundert gelang es der Wissenschaft viele der offenen Fragen mittels Beobachtungen zu beantworten und mit Modellen zu beschreiben.

Die Sonne ist ein aktiver Stern, dessen Aktivität sich in seinem magnetischen Zyklus ausdrückt, welcher in enger Verbindung zu den Sonnenfleckenzahlen steht. Flares spielen dabei eine besondere Rolle, da sie hohe Energien auf kurzen Zeitskalen freisetzen. Sie werden begleitet von erhöhter Strahlungsemission über das gesamte Spektrum hinweg und setzen darüber hinaus auch energetische Teilchen frei. Beobachtungen von harter Röntgenstrahlung (z.B. mit der RHESSI Raumsonde der NASA) zeigen, dass ein großer Teil der freigesetzten Energie in die kinetische Energie von Elektronen transferiert wird. Allerdings ist nach wie vor nicht verstanden, wie die Beschleunigung der vielen Elektronen auf hohe Energien (jenseits von 20 keV) in Bruchteilen einer Sekunde erfolgt.

Die vorliegende Arbeit präsentiert ein Model für die Erzeugung von energetischen Elektronen während solarer Flares, das auf mit realen Beobachtungen gewonnenen Parametern basiert. Danach bauen photosphärische Plasmaströmungen elektrische Spannungen in den aktiven Regionen der Photosphäre auf. Für gewöhnlich sind diese Potentiale mit elektrischen Strömen verbunden, die innerhalb der Photosphäre geschlossen sind. Allerdings kann infolge von magnetischer Rekonnektion eine magnetische Verbindung in der Korona aufgebaut werden, die die Regionen von magnetisch unterschiedlicher Polarität miteinander verbindet. Wegen der deutlich höheren koronalen elektrischen Leitfähigkeit, kann darauf die photosphärische Spannungsquelle über die Korona geschlossen werden. Das auf diese Weise generierte elektrische Feld führt nachfolgend zur Erzeugung eines hohen elektrischen Stromes, der in der dichten Chromosphäre harte Röntgenstrahlung generiert.

Die zuvor erläuterte Idee wird mit elektrischen Schaltkreisen modelliert und untersucht. Dafür werden die mikroskopischen Plasmaparameter, die Geometrie des Magnetfeldes und Beobachtungen der harten Röntgenstrahlung verwendet, um makroskopische elektronische Komponenten, wie z.B. elektrische Widerstände zu modellieren und miteinander zu verbinden. Es wird gezeigt, dass der auftretende koronale Strom mit hohen elektrischen Feldern verbunden ist, welche Elektronen schnell auf hohe relativistische Energien beschleunigen können.

Die Ergebnisse dieser Berechnungen sind ermutigend. Die vorhergesagten Elektronenflüsse stehen im Einklang mit aus gemessenen Photonenflüssen gewonnenen Elektronenflüssen. Zudem liefert das Model einen neuen Ansatz für das Verständnis der harten Röntgendoppelquellen in den Fußpunkten.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:2903
Date January 2008
CreatorsÖnel, Hakan
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Physik und Astronomie
Source SetsPotsdam University
LanguageEnglish
Detected LanguageUnknown
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://creativecommons.org/licenses/by-nc-sa/3.0/de/

Page generated in 0.0032 seconds