Return to search

Alternative method for deposition of alumina thin films

Deposition of alumina thin films in the presence of fluorine as a method for reducing thehydrogen incorporation in the films was investigated in this thesis. Hydrogen incorporated in alumina thin films have been shown to cause a lower density and refractive index in amorphous films, assist electrical conduction through thin amorphous films as well as inhibiting the formation of the thermally stable α-phase. The depositions were made in a ultra high vacuum system where high vacuum conditions were simulated by leaking water vapor into the system. No substrate heating or substratebias was applied. Films were deposited at a range of fluorine partial pressures, from 2,5×10-6- 5×10-5 Torr, and were analyzed by elastic recoil detection analysis, nuclear reaction analysis, scanning electron microscopy and x-ray diffraction. Mass spectrometry measurements were done during the depositions to analyze the deposition process. The mass spectrometry investigations show that there is a trend of increasing O2 partial pressures with increasing fluorine partial pressures during the depositions. This is attributed to the well known reaction: 2H2O+F2→O2+4HF. However, no trend in the measured water partial pressures can be observed. The increase in the O2 partial pressure is therefore attributed to a reaction between water and fluorine on the chamber walls. The chemical analysis show that the hydrogen incorporation in the films were lowered from ~10 at.% when deposited in the presence of water vapor to ~3 at.% when deposited in the presence of water vapor and 2×10-5 Torr fluorine. The hydrogen incorporation stabilize at ~3 at.% at higher fluorine partial pressures. However, there is also a large amount of fluorine incorporated in the films, ~20 at.% with a fluorine partial pressure during the deposition of 2×10-5 Torr and ~46 at.% with a fluorine partial pressure of 5×10-5 Torr. There is a slight increase in the aluminum concentration in the films deposited with fluorine. This is attributed to bonding the hydrogen in aluminum hydroxide while the reminder forms Al2O3 or Al leading to an increase in the aluminum concentration in the film. A linear decrease in the deposition rate with increasing fluorinepartial pressures during the deposition was observed, this can be explained by sputter etching of AlFx and AlOxFy by energetic O- ions. The XRD investigation show that the films deposited with the highest fluorine partial pressures were x-ray amorphous, the films with deposited with lower fluorine partial pressures are therefore also assumed to be amorphous.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-16706
Date January 2009
CreatorsMagnfält, Daniel
PublisherLinköpings universitet, Institutionen för fysik, kemi och biologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0025 seconds