Printed circuit boards used in most ordinary electrical devices are usually equipped through an assembly line. Pick and place machines as part of those lines require accurate detection of incorrectly picked components, and this is commonly performed via image analysis. The goal of this project is to investigate if we can achieve state-of-the-art performance in an industrial quality assurance task through the application of artificial neural networks. Experiments regarding different network architectures and data modifications are conducted to achieve precise image classification. Although the classification rates do not surpass or equal the rates of the existing vision-based detection system, there remains great potential in the deployment of a machine-learning-based algorithm into pick and place machines. / Tryckta kretskort som används i de flesta vanliga elektroniska produkter är vanligtvis monterade i monteringslinjer. Ytmonteringsmaskinerna i dessa monteringslinjer kräver exakt detektering av felaktigt plockade komponenter, vilket ofta genomförs med hjälp av bildanalys. Målet med detta projekt är att undersöka om vi kan uppnå framstående resultat i en industriell kvalitetssäkringsuppgift genom användandet av artificiella neuronnätverk. Experiment utförs med olika nätverksarkitekturer och datamodifikationer för att uppnå exakt bildklassificering. Även om klassificeringsgraderna inte uppnår klassificeringsgraderna hos existerande synbaserade detekteringssystem, finns en stor potential för användandet av maskininlärningsbaserade algoritmer i ytmonteringsmaskiner.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-230732 |
Date | January 2018 |
Creators | Kolibacz, Eric |
Publisher | KTH, Robotik, perception och lärande, RPL |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2018:316 |
Page generated in 0.0021 seconds