La réparation par excision de nucléotides (NER) permet l'élimination des lésions provoquant une distorsion de la double hélice de l’ADN. Ces lésions sont induites par plusieurs agents environnementaux comme les rayons UV, ainsi que par certaines drogues chimio- thérapeutiques tel que le cisplatine. Des défauts dans la NER conduisent à de rares maladies autosomiques héréditaires : La xérodermie pigmentaire (XP), le syndrome de Cockayne (CS), le syndrome de sensibilité aux UVSS et la trichothiodystrophie (TTD). Ces maladies sont associées soit à une prédisposition élevée au cancer de la peau et / ou à de graves anomalies du développement neurologique. Le groupe de patients XP-A représente le deuxième groupe (XP) le plus fréquent, et possède la forme la plus sévère combinant cancer de la peau avec un haut risque de dégénérescence neurologique. À date, aucune explication n`a été proposée pour les symptômes neurologiques observés chez ces patients. Nous avions suggéré ainsi que la protéine XPA possède d`autres fonctions dans d`autres processus cellulaires, ceci en interagissant avec des partenaires protéiques différents de ceux déjà connus. Afin de confirmer cette hypothèse nous avions réalisé une étude protéomique à grande échelle en combinant la spectrométrie de masse à une immunoprécipitation en Tandem d`affinité (TAP), afin d`identifier de nouvelles protéines interagissant directement avec XPA. Nous avions montré que XPA peut interagir avec MRE11, la protéine clé de la réparation par recombinaison homologue. Des études additionnelles sont requises pour confirmer cette interaction et comprendre sa fonction / To maintain genome integrity and ensure the continuation of transcription, helix distorting DNA lesions induced by UV and other environmental mutagens are eliminated through a highly-versatile DNA repair pathway: nucleotide excision repair (NER). Mutations in 11 genes (XPC, XPE, XPB, XPD, XPG, XPA, XPG, TTD-A, CSA, CSB and UVSSA), among the 30 genes directly involved in NER, have been associated with the human genetic disorders: xeroderma pigmentosum (XP), cockayne syndrome (CS), trichothiodystrophy (TTD), and UV-sensitive syndrome (UVSS). Patients of these syndromes display a wide variety of clinical features that range from normal development with extreme predisposition to cancer, to neurodevelopmental defects associated with premature aging abnormalities. The connection between DNA damage and neurodegeneration remains unclear, i.e. cannot be explained by a DNA-repair deficiency alone, implying that various repair factors perform other functions beyond the repair process. XP-A is the second most common form of XP. XP-A cells have very low levels of NER activity and are sensitive to killing by UV light. It is one of the most severely affected XP groups, with the onset of cutaneous features, skin cancer, ocular features, and severe early onset neurological disease. Therefore we hypothesize that XPA interacts with cellular proteins that regulate its functions either in UV damage repair or in neurological development. To test this, our major aim was to carry out a large-scale proteomics investigation to identify novel interacting partners for XPA in the absence or presence of genotoxic stress, thus providing clues on the origins of neurodegeneration observed in many XP-A patients. We provide evidence that XPA can interact with MRE11, the key factor in repair of double strand breraks by homologous Recombination. Future experiments will be aimed at determining the impact of the XPA/MRE11 interaction functions in cells.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/13725 |
Date | 01 1900 |
Creators | Sekheri, Meriem S. |
Contributors | Drobetsky, Elliot |
Source Sets | Université de Montréal |
Language | French |
Detected Language | French |
Type | Thèse ou Mémoire numérique / Electronic Thesis or Dissertation |
Page generated in 0.0024 seconds