Z-pinning is a through-thickness reinforcement technology for polymer composite materials that has been developed and commercialised over the past fifteen years. The through-thickness reinforcement of composites with thin metallic or fibrous pins aids in suppressing delamination, improving impact damage tolerance and increasing joint strength. Z-pins are applied to the composite part during its manufacture. Pins are embedded within sheets of foam and placed over the unconsolidated part. Subsequently, the foam is compacted and the pins transferred into the part, which is usually an uncured prepreg. In this manner, large numbers of pins can be inserted quickly and easily. The pinned composite is then cured using conventional processes. The use of z-pins is currently limited to several high performance composite structures, most notably Formula One racing cars and F/A-18 E/F (Superhornet) fighter aircraft, although the technology has potential applications in a d iverse variety of aerospace and non-aerospace composite structures. A limited understanding of the mechanical performance of z-pinned parts under high load and fatigue loading conditions currently hinders the application of z-pinned composites. The aim of this PhD project is to investigate the mechanical properties, strengthening mechanics and failure mechanisms of z-pinned carbon/epoxy laminates and joints. The effect of z-pin reinforcement on the tensile and flexural properties of laminates under monotonic and fatigue loading is studied. The sensitivity of these properties to the volume content and diameter of the z-pins is systematically studied by experimentation and analytical modelling. This PhD also evaluates the efficacy of z-pins in improving the load-bearing properties of carbon/epoxy lap joints. Improvements to the room temperature and elevated temperature properties of z-pinned lap joints under monotonic and fatigue tensile loading were determined. The effect of strain rate on the load-bearing properties of z-pinned lap joints was also evaluated. A further aim of the PhD project was to assess the z-pin manufacturing process and the microstructural damage caused by that process. The outcome of this study augments the analysis of the me chanical properties of z-pinned laminates and joints.
Identifer | oai:union.ndltd.org:ADTP/210078 |
Date | January 2006 |
Creators | Chang, Paul, mrpc@tpg.com.au |
Publisher | RMIT University. Aerospace, Mechanical and Manufacturing Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright Paul Chang |
Page generated in 0.0013 seconds