Isoflavone synthase (IFS; CYP93C) plays a key role in the biosynthesis of the plant secondary metabolites, isoflavonoids. These phenolic compounds, which are well-known for their multiple biological effects, are produced mostly in leguminous plants (family Fabaceae). However, at least 225 of them have also been described in 59 other families, without any knowledge of orthologues to hitherto known IFS genes from legumes (with the single exception of sugar beet - Beta vulgaris, from the family Chenopodiaceae). In view of these facts, this masters thesis has focused on two main objectives: (1) to identify isoflavone synthase genes in selected leguminous and non-leguminous plants exploiting the PCR strategy with degenerate and non-degenerate primers, and (2) to find a system for the verification of the correct function of these genes. Our methodology for the identification of IFS orthologues was successfully demonstrated in the case of two examined legumes - Phaseolus vulgaris L. and Pachyrhizus tuberosus (Lam.) Spreng, in the genomic DNA of which the complete IFS sequences have been newly identified. To design a procedure for ascertaining the correct function of these genes and others once they have been completely described, a pilot study with IFS from Pisum sativum L. (CYP93C18; GenBank number...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:295880 |
Date | January 2010 |
Creators | Pičmanová, Martina |
Contributors | Honys, David, Vaňková, Radomíra |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0025 seconds