Return to search

EFFECTS OF LIGHT DEPRIVATION ON PROLACTIN REGULATION IN THE GOLDEN SYRIAN HAMSTER (PINEAL, ESTROUS CYCLE, BLINDING, MESSENGER-RNA, SYNTHESIS).

Pineal-mediated depressions in prolactin cell activity after light deprivation were studied in the male and female Golden Syrian hamster. Prolactin cell activity was determined by measuring radioimmunoassayable prolactin, newly synthesized prolactin and prolactin mRNA levels in the pituitary. Serum prolactin was also measured by radioimmunoassay. Use of the recombinant DNA plasmid, pPRL-1, which contains the rat prolactin complimentary DNA sequence, was validated in this dissertation for measuring prolactin mRNA in the hamster. Male hamsters blinded for 11, 21, or 42 days showed significant and progressively greater declines in prolactin mRNA levels which were completely prevented by pinealectomy. The decline seen after 11 days is the earliest depression in prolactin cell activity reported after light deprivation in the hamster. Female hamsters blinded for 28 days, however, showed no such decreases in prolactin cell activity if they continued to display estrous cyclicity. This supports the hypothesis that, unlike the male, there is not a gradual decline in prolactin cell activity after blinding in the female hamster and that loss of estrous cyclicity may precede or possibly accompany declines in prolactin cell activity. After 12 weeks of blinding, females were acyclic and had dramatically depressed levels of prolactin cell activity. However, pinealectomy did not completely prevent this decline due to blinding unless the females continue to display estrous cyclicity. Thus, when pinealectomy was ineffective in preventing the loss of estrous cyclicity due to blinding, it was also ineffective in preventing declines in prolactin cell activity. In ovariectomized females, blinding caused a decline in prolactin cell activity. Pinealectomy was not consistently effective in preventing this decline after 12 weeks of treatment, although, in females blinded for 4 weeks (at which time all animals were cycling) and then ovariectomized for an additional 4 weeks, pinealectomy completely prevented this decline in prolactin cell activity. In a separate study, significant changes in prolactin cell activity during the estrous cycle were seen in untreated normally cycling female hamsters. These changes in prolactin mRNA, prolactin synthesis, and radioimmunoassayable prolactin in the pituitary were measured in the morning, when, consistent with other reports, no differences in serum prolactin were observed.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/183824
Date January 1986
CreatorsMASSA, JOHN SAMUEL.
ContributorsBlask, David
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0022 seconds