A model of a gas turbine blade cooling channel equipped with turbulators and a backward facing step geometry was examined. Up to four turbulators oriented cross-stream and inclined 45° to the flow direction were mounted in the channel. The blockage ratio b/H of the turbulators and the height h/H of the backward facing step was 0:125 and 0:14 respectively. The number of turbulators as well as their size was varied. In a preliminary investigation, hot-wire and pressure measurements were taken for three different Reynolds numbers (5,000, 12,000, 18,000)in the center plane of the test section. Subsequently, particle image velocimetry (PIV) measurements were made on the same geometries. Results of PIV measurements for a Reynolds number range of Reb=600 to 5,000 for the turbulators and Reh=1,500 to 16,200 for the backward facing step are presented, where Reynolds numbers are based on turbulator height b and step height h, respectively. Plots of the velocity field, vorticity, reverse flow probability and RMS velocity are shown. The focus is on the steady flow behavior but also the unsteadiness of the flow is discussed in one section. Also reattachment lengths were obtained and compared among the various turbulator arrangements and the backward facing step geometry. It was found that the flow becomes periodic after three or four ribs. For one turbulator, a very large separation region was observed. The magnitude of the skin friction factor was found to be the highest for two ribs. If the first rib is replaced by a smaller rib, the skin friction factor becomes the lowest for this case. Compared to the backward facing step, the flow reattaches earlier for multiple turbulators. A dependency of reattachment length on Reynolds number was not observed.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1306 |
Date | 01 January 2001 |
Creators | Roclawski, Harald |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Master's Theses |
Page generated in 0.0062 seconds