Breathing is a vital phenomenon that implies synergy of various anatomical structures that constitute the thorax. Joint physiology remains a relatively poorly-known component of the overall thorax physiology. Quantitative literature related to in vivo thorax kinematics during breathing is scarce. The present work focuses specifically on developing and applying a methodology to reach this goal. The developed method combined processing of CT data obtained at different lung volumes and infographic techniques. Detailed ranges of motion (ROMs) and axes of movement (mean helical axes, MHAs) were obtained at costovertebral joints in 12 asymptomatic subjects; rib ROMs gradually decrease with increasing rib number; lung volume and rib level have a significant influence on rib ROM; MHAs did not differ between rib levels. In addition, the method was applied on a sample of 10 patients with cystic fibrosis. The pathological condition significantly influenced CVJ ROMs while the orientation of the MHAs did not differ. Finally, the sternal displacement, sternal angle variations and sternocostal joints (SCJ at rib1 to 7) kinematics during breathing motion were analyzed. Rib ranges of motion relative to sternum decreased with increasing rib number similarly to CVJ. Orientation of the MHAs did not differ between SCJ levels. A significant linear correlation was demonstrated between sternum vertical displacement and rib ranges of motion at both CVJ and SCJ. The present work substantially contributes to 3D modelling of human thorax in breathing at a joint level both qualitatively and quantitatively. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
Identifer | oai:union.ndltd.org:ulb.ac.be/oai:dipot.ulb.ac.be:2013/241723 |
Date | 20 December 2016 |
Creators | Beyer, Benoît |
Contributors | Van Sint Jan, Serge, Chèze, Laurence L., Melot, Christian, Fréchède, Bertrand, Ninane, Vincent, Shariat-Torbaghan, Bezhad, Aliverti, Andrea, Subit, Damien |
Publisher | Universite Libre de Bruxelles, Université Claude bernard Lyon1, Faculté des Sciences et Technologies, Département de Mécanique - Docotrat en Biomécanique, Université libre de Bruxelles, Faculté de Médecine – Sciences biomédicales, Bruxelles |
Source Sets | Université libre de Bruxelles |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:ulb-repo/semantics/doctoralThesis, info:ulb-repo/semantics/openurl/vlink-dissertation |
Format | No full-text files |
Page generated in 0.0019 seconds