Return to search

Syn-eruptive incision of Koko Crater, Oahu, Hawaii by condensed steam and hot cohesive debris flows: a re-interpretation of the type locality of "surge-eroded U-shaped channels"

Phreatomagmatic fall, low-concentration PDC deposits and remobilized equivalents dominate the products of craters (tuff cones/rings) of Koko fissure, south-east Oahu. At Koko crater, Fisher (1977) described U-shaped channels, which he interpreted as due to erosion by low-concentration PDCs (surges), with minor modification by stream and debris flows. Similar channels on tuff cones and rings elsewhere in the world have been interpreted as surge-eroded by subsequent authors. However, no evidence for erosion by PDCs was observed during recent fieldwork, which suggested rather the following model. An important observation is that initial incision is always correlated with the emplacement of vesiculated ash layers (derived from Hanauma Bay), and is only very rarely associated with other facies. Incision of the vesiculated ash by run-off generated an initial and widespread network of sinuous, narrow (<15 cm) and shallow (<15 cm) rills. The strong correlation of rills with vesiculated ash and the lack of obvious water-escape structures in these ashes implies that run-off was mostly derived from associated steam-rich plumes. Initial steam and rain-fed incision was probably also enhanced in these very fine-grained cohesive deposits as a consequence of lowered infiltration rates. The rill network developed locally into deeper channels (i.e. gullies) during steam and rain-fed run-off, and by significant erosion during emplacement of vesiculated (hot) debris flows, derived from remobilized vesiculated ash. Pyroclastic density currents from Hanuama Bay traveling laterally across the flank of Koko Crater, perpendicular to the gully axes, provided the bulk of the gully fills, but gave rise to little or no modification of their margins. Rill and gully development by rainfall alone could explain similar examples of incision of low-concentration PDC deposits elsewhere in the world, but the possibility of steam-fed rills and erosion by hot debris flows should be considered. Low-concentration PDCs do not seem to be able to erode their substrate in all cases.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-07282004-140556
Date05 October 2004
CreatorsBluth, Jessica Keri
ContributorsDr. Ian Skilling, Dr. Charles Jones, Dr. Michael Ramsey
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-07282004-140556/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0099 seconds