Return to search

Multi-frequency, Multi-temporal, Brush Fire Scar Analysis in a Semi-Arid Urban Environment

The number of forest fires has increased dramatically over the past five years in western areas of the United States, due to both human and natural causes. Urban areas, such as the city of Phoenix, continue to increase in size and population, with a majority of the development occurring in rural areas that have burned, or are threatened by brush fires. As people move into these environments there is an increased risk of damage to human property and lives due to fires. These areas have experienced a number of recent brush fires that have been expensive to fight, and caused a considerable amount of property damage. The ability to predict and control fires is thus increasingly important as urban centers encroach upon rural lands. Remote sensing can be utilized to characterize fire scarred areas, and predict areas that have an increased risk for burning again in the future. Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), Landsat Thematic Mapper (TM), and Spaceborne Imaging Radar - C (SIR-C) remote sensing data have been combined with a geographic information system (GIS) to characterize fire scars in a semi-arid urban area outside of Phoenix, Arizona. This data was also used to quantify the relationship of fire scar age to vegetative recovery. In addition to the remote sensing aspect of this project, an initial geomorphological investigation was conducted to determine the effect of fire on sediment flux and landscape evolution. Detailed topographic surveys, combined with sediment trap data, were used to examine differences in erosion between burned and unburned catchments. These results have implications for potential flooding risks due to removal of vegetative cover by fires. By combining remote sensing data with a GIS database, and through comparison with geomorphic/sedimentological investigations, this work may permit city officials and urban planners to better calculate potential risks for both future fire and flood hazards within the region.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-12172003-090422
Date28 January 2004
CreatorsMisner, Tamara Janelle
ContributorsDr. Michael Ramsey, Dr. Mark Abbott, Dr. Ramon Arrowsmith
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-12172003-090422/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0022 seconds