Return to search

RAPID CLIMATE CHANGE IN THE TROPICAL AMERICAS DURING THE LATE-GLACIAL INTERVAL AND THE HOLOCENE

Till deposits, related to advances of mountain glaciers, and lake sediments record periods of abrupt warming and cooling during the Late Glacial interval (LG) (17,500 to 11,650 cal yr BP) in the northern tropical Andes. The synchronicity of temperature shifts in the tropical mountains and high northern latitudes during this period indicates that the low latitude atmosphere played a major role in LG abrupt climate change. Generally, the northern tropics are cold and dry when temperatures are lower in the North Atlantic region, and the opposite occurs during warm periods. The pattern of abrupt seesaw-like hemispheric temperature shifts, and the apparent link to tropical atmospheric dynamics, demonstrates the importance of low latitude circulation and water vapor feedbacks in rapid climate change. Geologic evidence from the precipitation-sensitive southern tropical Andes were used to reconstruct periods of ice advances and retreats during the Late Holocene. Neoglaciation in the Cordillera Raura of Peru began at ~3100 cal yr BP, marking a transition to a prolonged period of increased moisture transport to the Andes. The most extensive neoglacial advance took place locally during the Little Ice Age when conditions were both wetter and colder. The long-term, Holocene pattern of renewed ice cover in this region of the Andes was probably enhanced by astronomical forcing and convection-driven changes in moisture availability. Short-term glacial variability during the neoglacial was likely driven mostly by a combination of solar, atmospheric and oceanic processes. Lake sediments from the Pacific region of Nicaragua were used to record changes in the regional moisture balance during the late Holocene (~1600 cal yr BP to the present). Oxygen isotope values of calcium carbonate down-core identify periods of lake level fluctuations that resulted from changes in precipitation and evaporation rates. The driest regional conditions recorded in the isotope data are coincident with the onset of Little Ice Age cooling. This abrupt transition to more arid atmospheric conditions at 700 cal yr BP is consistent with other records from the northern tropics and subtropics that suggest hydrologic changes in the tropics were connected to high latitude climate variability during the late Holocene.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-04152009-090612
Date24 June 2009
CreatorsStansell, Nathan Derek
ContributorsDaniel Bain, Michael Rosenmeier, Mark Abbott, Donald Rodbell, Thomas Anderson
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-04152009-090612/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0176 seconds