Return to search

Improved Mapping Accuracy of Planetary Surfaces Using Super-Resolution of Thermal Infrared Data

Super-Resolution is the process of obtaining a spatial resolution greater than that of the original resolution of a data source. This can be done through the fusion of original data with an additional source that has the desired resolution. These approaches can either be qualitative for visual appeal, quantitative for data accuracy, or some combination of both. The super-resolution approach offers an alternative to traditional sub-pixel deconvolution identification and provides higher resolution TIR data for Earth and Mars.
The Thermal Emission Imaging System (THEMIS) has provided the highest spatial resolution (100 meter / pixel) thermal infrared (TIR) data of the Mars surface to date. These data have enabled the discovery of small-scale compositional units and helped to constrain surface processes operating at these scales. Higher resolution visible instruments have revealed smaller-scale differences, creating a need to detect compositional variability using TIR data at scales below 100 meters. Putative chloride deposits identified on Mars are one such area. These deposits have a unique spectral signature in the TIR and are present within topographic lows. The super-resolution algorithm helped constrain the local mineral assemblages and stratigraphic order. This data reveals that associated phyllosilicate-rich units may be part of a common lithostratigraphic unit with a phyllosilicate-poor ST-2 material.
Lunar Lake playa, located ~100 km northeast of Tonopah, Nevada, has been used as an analog site for multiple planetary surfaces and as a vicarious calibration site for Earth-orbiting satellites. As such, the ability to obtain higher resolution data through super-resolution has the potential to improve Earth data and give to insight into the formation of similar environments on other planetary surfaces. Super resolved data show Lunar Lake playa to be more compositionally heterogeneous than previously thought. A gradation of mineralogy exists within the playa, seen in both super-resolved data and in samples collected during fieldwork. The composition of the playa is influenced by the immediate surroundings, with variation existing between the western side of the playa, bounded by basaltic units, and the eastern, bounded by rhyolitic tuff. As the surrounding material weather, different clasts are transported onto the playa, and weather into different mineral assemblies.

Identiferoai:union.ndltd.org:PITT/oai:PITTETD:etd-04202011-112822
Date29 June 2011
CreatorsHughes, Christopher Gerald
ContributorsJoshua L Bandfield, William Harbert, Daniel J Bain, Michael S Ramsey, Charles E Jones, Thomas H Anderson
PublisherUniversity of Pittsburgh
Source SetsUniversity of Pittsburgh
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.library.pitt.edu/ETD/available/etd-04202011-112822/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Pittsburgh or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds