The transit method of detecting extrasolar planets relies on the small periodic changes in the brightness of the planet's host star as the planet orbits between the observer and the star. Transiting planets are extremely useful discoveries due to the significant gain in information that can be obtained on the planet and its host star than extrasolar planets discovered with other methods. The field of transiting planets has matured rapidly in the last 5 years, particularly in the area of wide-field surveys. This thesis describes the results of two such surveys. The Vulcan South Antarctic Planet Finder was designed to exploit the conditions at the South Pole, which are ideal for a transit survey. Several hardware failures resulted in the acquisition of only a small amount of corrupted data on a single field. The University of New South Wales Extrasolar Planet Search is an ongoing transit survey using the 0.5-m Automated Patrol Telescope at Siding Spring Observatory, Australia. 25 fields were observed for 1-4 months each between 2004 October and 2007 May. Light curves were constructed for ~87,000 stars down to I= 14th magnitude, and from these 23 planet candidates were identified. Ten candidates were eliminated using higher spatial resolution archived images and online catalogue data. Eight were followed up with higher spatial resolution imaging and/or medium resolution spectroscopy and were determined to be eclipsing binaries. Five candidates remain that require additional observation to determine their nature. No planets have been confirmed in this data set thus far. The large sets of high precision light curves generated by transit surveys hold significant potential for additional data-mining. To demonstrate this, a variable star catalogue was compiled from the full data set. A total of 850 variable stars were identified, with 659 new discoveries. In the course of compiling this catalogue, the first example of a high-amplitude δ Scuti star in an eclipsing binary was identified. This represented the first opportunity for a dynamical mass measurement of a highamplitude δ Scuti star, and the system was studied comprehensively.
Identifer | oai:union.ndltd.org:ADTP/258321 |
Date | January 2007 |
Creators | Christiansen, Jessie Leigh, Physics, Faculty of Science, UNSW |
Publisher | Awarded By:University of New South Wales. Physics |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.0012 seconds