High-speed planing craft operating in waves are subject to frequent water impact, or slamming, as a portion or whole of the craft exits the water and re-enters at high velocity. The global load induced by slamming can cause fatigue-related damages to structures. The local slamming can cause local damage to structures and its induced acceleration can cause damage to equipment and personnel aboard. Therefore the slamming loads in high-speed craft are critical design loads. Nowadays, due to the increasing use of composite materials in high-speed craft, the interaction between the hydrodynamic loading and structural response, or hydroelasticity, must be considered.
In this work, a flexible V-shaped wedge, which vertically enters the calm water with an impact velocity, was examined experimentally and numerically to characterize the slamming of a representative cross-section of high-speed craft. Physical quantities of interest include rigid-body kinematic motions, spray root propagation, hydrodynamic loading, and structural response. In the experimental work, with varied impact velocity and flexural rigidity of the wedge bottom plate, a wide range of hydroelasticity factors were investigated. The intersection between the bottom plate and side plate is called chine. The phases before and after the spray root reached the chine are called chine-unwetted and chine-wetted phase, respectively. It was found that the maximum deflection and strain occur in the chine-unwetted phase while a structural vibration with rapidly decaying magnitude is observed in the chine-wetted phase. Furthermore, the kinematic effect of hydroelasticity changes the spray root propagation and hence the pressure, while the inertial effect elongates the natural period of the plate.
Inspired by the experimental work, a computational framework was proposed to focus on the chine-unwetted phase. Several hydroelastic models can be obtained from this framework. The hydroelastic models were validated to show reasonable agreement with experiments. Various parameters were studied through the computational framework. The hydroelasticity factor was modified to account for the mass and boundary conditions. It was found that the nondimensional rigid-body kinematic motions and maximum deflection showed little dependence on the hydroelasticity factor. Hydroelastic effects increased the time it takes for the peak maximum deflection to be reached for small values of the hydroelasticity factor. Hydroelastic effects also have little influence on the magnitude of the maximum deflection. These discoveries further the understanding of hydroelastic slamming and show the potential to guide the structural optimization and design of high-speed craft. / Doctor of Philosophy / High-speed planing craft operating in waves are prone to frequent water impact, or slamming, as a portion or whole of the craft exits the water and re-enters at high velocity. The slamming loads in high-speed craft are critical design loads as the slamming can cause damage to the structures and equipment as well as injure personnel aboard. Nowadays, due to the increasing use of composite materials in high-speed craft, the interaction between the hydrodynamic loading and structural response, or hydroelasticity, must be considered.
In this work, a flexible V-shaped wedge entering water is studied experimentally and computationally to characterize the slamming of a representative cross-section of high-speed craft. The contact point between the water surface and the wedge bottom is called the spray root. It was found that the hydrodynamic loading and structural response interact with each other through the spray root. The maximum deflection and strain occur when the wedge bottom is partially submerged while a structural vibration with rapidly decaying magnitude is observed when the wedge bottom is fully submerged. Using the hydroelasticity factor proposed by other researchers, the extent of fluid-structure interaction was quantified. Hydroelastic effects manifest themselves when the hydroelasticity factor is small These discoveries further the understanding of hydroelastic slamming and show the potential to guide the structural optimization and design of high-speed craft.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/108760 |
Date | 27 August 2020 |
Creators | Ren, Zhongshu |
Contributors | Aerospace and Ocean Engineering, Gilbert, Christine Marie, Patil, Mayuresh J., Brizzolara, Stefano, Wang, Kevin Guanyuan, Philen, Michael Keith |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0021 seconds