Return to search

Characterization and Management of the Race Structure of Phytophthora parasitica var. nicotianae

Deployment of tobacco cultivars with single-gene (Ph), complete resistance to race 0 of the tobacco black shank pathogen has resulted in a rapid increase in the occurrence of race 1 in N.C. A four-year cultivar rotation study was conducted in three fields to assess how different levels and types of resistance affected the race structure and population dynamics of the pathogen. In a mixed race field, the high level of partial resistance in ?K 346? was most effective in reducing disease and race 1 populations decreased. The deployment of complete resistance in ?NC 71? resulted in intermediate levels of disease, and race 1 increased. ?K 326?, with a low level of partial resistance, had the highest levels of disease, and race 0 was dominant. In a field where no race 1 was detected initially, disease incidence was high with the use of partial resistance. Complete resistance was very effective in suppressing disease, but race 1 was recovered after only one growing season. By the end of the third growing season, race 1 was recovered from most ?NC 71? treatments. In a field where race 1 was predominant, a high level of partial resistance was most effective in controlling disease and race 0 increased rapidly. A rotation of single-gene resistance and a high level of partial resistance was the most effective rotation for disease management and it minimized race shifts in the pathogen. This may serve to prolong the usefulness of the Ph gene. Populations of race 1 decreased relative to race 0 when cultivars with partial resistance were rotated with complete resistance, suggesting that race 1 isolates are not as fit as race 0 isolates. Experiments were conducted to compare their pathogenic and ecological fitness. Forty isolates of race 0 and 20 isolates of race 1 were used to inoculate tobacco cultivars with low, moderate, and high levels of partial resistance. Race 0 isolates were more aggressive than the race 1 isolates; incubation period was shorter and root rot severity greater with race 0 isolates than with race 1 isolates. Isolates of race 1 caused greater stunting of plants than race 0 isolates. Field microplots were infested with either a single race or an equal mixture of each race. Soil samples were collected and populations determined at the end of each growing season and again the following spring. There were no statistical differences in survival between races, but over both years of the study there was a trend for race 0 to survive better than race 1. One-hundred ninety five isolates of P. parasitica var. nicotianae were subjected to amplified fragment length polymorphism (AFLP) analysis to characterize the genetic diversity among isolates and within pathogen races 0 and 1. Isolates included 20 diverse isolates and an additional 175 isolates obtained over years from a field in Duplin Co., N.C. From all isolates evaluated, 256 of 304 markers (85%) were polymorphic and provided 106 AFLP profiles. The AFLP phenotypes initially detected within each plot were maintained throughout the study but additional phenotypes were recovered over years. At least 6 race 0 and race 1 isolates collected from a single test plot were similar and clustered together in the unweighted pair-group mean analysis phenogram. Examination of the AFLP profiles showed race 0 and race 1 isolates differed by only 2 to 4 markers. Results indicated that P. parasitica var. nicotianae is diverse and that the multiple occurrences of race 1 that were recovered throughout this field over years were independent events where race 1 was selected from within the pathogen population.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-10292004-152059
Date01 November 2004
CreatorsSullivan, Melinda Jo
ContributorsThomas Melton, H. David Shew, Shuijin Hu, Earl Wernsman, Marc Cubeta
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-10292004-152059/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0018 seconds