Return to search

Effects of Work Sharing of Shoulder and Ankle Movements During Walking

People experiencing mobility deficiencies in their lower limbs caused by genetics, injuries, diseases, etc. struggle with their physical and mental health. The goal of this research is to design an exoskeleton that will connect the upper limb (e.g., arm extension) to the ankle joint during walking movements. We advanced the first prototype of the Workshare Upper Lower Limb (WULL) by only targeting the ankle joint as the lower limb component. We found that this change would have the biggest impact on an individual's walking movements. The benefit of this research will be found in answering the question: will harnessing the kinetic energy from a person's upper limb (e.g., arm extension or arm flexion) to transfer into the ankle joint for gait assistance reduce the lower limb muscle activation during walking movements? A series of experiments were run to test the efficacy of the wearable device. Six participants were fitted to the device and six electromyography (EMG) sensors to track the muscle activation during a comfortable walking pace. This gait analysis study used pressure insoles to calculate ground reaction forces and multiple IMUs to track the individuals' limbs and joints kinetic motion. The overall effectiveness of the device was explored based on the data collected in this study. This device decreased muscle activation of the gastrocnemii medialis and increased the anterior deltoid activation. These results support the goal of the experiment to utilize the upper limbs (anterior deltoid) to assist the lower limbs (ankle joint) during walking.

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses-2703
Date01 January 2023
CreatorsPaffrath, Lauren G
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceHonors Undergraduate Theses

Page generated in 0.002 seconds