Return to search

Smart nanomaterials based on the photoactivated release of silver nanoparticles for bacterial control / Nanomateriais inteligentes baseados na liberação fotoativada de nanopartículas de prata para controle bacteriano

Smart nanomaterials can selectively respond to a stimulus and consequently be activated in specific conditions, as a result of their interaction with electromagnetic radiation, biomolecules, pH change, etc. These nanomaterials can be produced through distinct routes and be used in artificial skin, drug delivery, and other biomedical applications. In this thesis, two smart nanosystems were developed, viz., i) nanocapsules formed by aniline (A) and chitosan (CS) (A-CS) containing silver nanoparticles (AgNPs), with an average size of 78 ± 19 nm, and ii) polycaprolactone (PCL) nanofibers, fabricated by the electrospinning technique containing AgNP into their bulk, with a diameter of 417 ± 14 nm. A novel system, based on the incorporation of the as-prepared nanocapsules onto the surface of PCL nanofibers containing AgNps (antibacterial mats), was also developed. The methodology employed avoids the direct contact of silver nanoparticles with the host and optimizes its release to the surrounding environment. The AgNPs release was triggered by exposing the nanocapsules to light at 405 nm. Consequently, the electronic energy vibration resulting from the interaction of the irradiation with the surface plasmon band (SPR) of AgNps, breaking the hydrogen bonds of the nanocapsules and releasing of AgNPs at a time of 150 s. To understand the perturbation of AgNps-Nanocapsules against bacteria, membrane models using Langmuir technique with the phospholipids 1,2-dipalmitoyl-sn-glycero-3-phospho-(1\'-rac-glycerol) (DPPG) and 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) were employed, which are the main components of cell membrane of Escherichia coli (E. coli). The results suggest that DPPG has more influence on the incorporation of the nanoparticles on the cell membrane. The antibacterial properties of the nanofibers/nanomaterials mats towards E. coli and Staphylococcus aureus (S. aureus) were investigated using the Agar diffusion test for 8 samples. The experiments revealed that the samples based on nanofibers/nanocapsules and irradiation presented a radius of inhibition of 2.58 ± 0.28 mm for S. aureus and 1.78 ± 0.49 mm for E. coli. This nanosystem showed to be highly interesting for biomedical applications. / Nanomateriais inteligentes podem responder seletivamente a um estímulo e consequentemente ser ativados em condições específicas, como resultado da sua interação com a radiação eletromagnética, mudança do pH, campo magnético, etc. Esses materiais podem ser produzidos através de distintas rotas e utilizados em aplicações como pele artificial, liberação de fármacos, e outras aplicações biomédicas. Nessa tese, dois nanossistemas inteligentes foram desenvolvidos, a saber: i) nanocápsulas formadas por anilina (A) e quitosana (CS) (A-CS) contendo nanopartículas de prata (AgNps), com um tamanho médio de 78 ± 19 nm, e ii) nanofibras de policaprolactona (PCL), fabricadas pela técnica de eletrofiação contendo AgNps em seu interior, com diâmetro de 417 ± 14 nm. Um terceiro sistema foi desenvolvido, baseado na incorporação das nanocápsulas na superfície das nanofibras de PCL contendo AgNps (manta antibacteriana). A metodologia utilizada evita o contato direto das nanopartículas de prata com o hospedeiro e otimiza sua liberação no meio ambiente. As AgNps liberadas foram acionadas pela exposição das nanocápsulas à um fonte de luz em 405 nm. Consequentemente, a vibração da energia eletrônica resultante da interação da irradiação com a banda plasmônica de superfície (SPR) das AgNps, quebra as ligações de hidrogênio da nanocápsula e libera as AgNps no meio em um tempo de 150 s. Para entender a perturbação das AgNps-nanocapsulas contra as bactérias, modelos de membrana foram usados através da técnica de Langmuir com os fosfolipídios 1,2-dipalmitoil-sn-glicero-3- fosfo-(1\'-rac-glicerol) (DPPG) and 1,2-dimiristoil-sn-glicero-3-fosfoetanolamina (DMPE), que são os principais componentes da membrana celular de Escherichia coli (E. coli). Os resultados sugerem que DPPG tem mais influência na incorporação das nanopartículas na membrana celular. As propriedades antibacterianas das mantas de nanofibras/nanomateriais contra E. coli e Staphylococus aureus (S. aureus) foram investigadas usando o teste de difusão Agar em 8 grupos, o qual revelou que o grupo contendo a nanofibra/nanocapsula e irradiação apresentou um raio de inibição de 2.58 ± 0.28 mm para S. aureus e 1.78 ± 0.49 mm para E. coli. Este nanossistema mostrou ser altamente interessante para aplicações biomédicas.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-14092017-143257
Date28 June 2017
CreatorsBallesteros, Camilo Arturo Suarez
ContributorsCorrêa, Daniel Souza, Zucolotto, Valtencir
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0021 seconds