Return to search

Continuous Production of Carbon Nanotubes Using Carbon Arc Reactor : Anode Surface Temperature Study and CFD Modelling.

The mass production of carbon nanotubes (CNTs) by a cost effective process is still a challenge for further research and application of CNTs. This research focussed on the deposition of CNTs on a continuously-fed carbon substrate via arc discharge at atmospheric pressure. In this work, modifications, control and optimization of the available arc-discharge reactor were conducted. New reactor support and new tape feeding mechanisms were added to the reactor for better temperature assessment, longer operating period and better control of the speed of the tape.
The influence of inter-electrode gap, substrate velocity and arc current on the surface temperature were investigated. Multiwalled carbon nanotubes (MWNTs) were produced at lower currents (< 20 A) and at larger inter-electrode gaps. Further investigation shows that inter-electrode gap influenced both the arc characteristic and the anode surface temperature (Ts). Here, Ts was measured by an optical pyrometer.
The inter-electrode gap was found to indirectly affect the formation of NTs. Anode surface temperature (Ts) varied with gap, reaching a minimum at an intermediate gap. Higher CNTs yield was found at this lowest Ts. This minimum Ts is consistent with the presence of a cloud of nanoparticles ejected by the heated graphite/carbon surfaces. These graphene fragments are thought to later fold and form nanotube “seeds” and then develop into multiwall nanotubes. This cloud of nanoparticles also may affect the electrical conductivity at the front of the anode. Simulation of the arc behaviour, i.e. temperature distributions and flow properties of the plasma, using a computer package Comsol Multiphysics 3.2, was stable only when the electrical conductivity of a dusty plasma near to the electrodes was included.
Our experiments show that carbon nanotubes grew better at a Ts range of ~ 3650 K - 3700 K and at the tape speed of 3 mm/s. The results from our work also strongly suggested that tiny carbon crystallites are the main intermediates for CNT growth in an electric arc. The limiting factor for a solid state growth mechanism, therefore, is high temperature annealing of carbon or graphene fragments. Further work should aim to understand the growth mechanism of CNTs, produce comprehensive analysis on the arc plasma composition and also explore the possibility of producing CNTs at higher rates.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/4386
Date January 2008
CreatorsYusoff, Hamdan bin Mohamed
PublisherUniversity of Canterbury. Chemical and Process Engineering
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Hamdan bin Mohamed Yusoff, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.002 seconds