En tant que technologie de projection thermique avancée, la projection plasma sous basse pression (LPPS) permet d'obtenir des revêtements de haute qualité et peut combler l'écart d'épaisseur entre les technologies de projection thermique conventionnelles et les procédés de couche mince standard. En outre, LPPS permet de construire des revêtements uniformes avec diverses microstructures; le dépôt a lieu non seulement à partir des éclaboussures liquides, mais aussi à partir des amas nanométriques ainsi que de la phase vapeur en fonction des conditions opérationnelles. Afin de continuer à améliorer et à développer le procédé LPPS, cette recherche vise à le combiner avec les procédés émergents de projection plasma en suspension et de projection plasma réactif. Il devait à la fois fournir deux nouveaux processus intégrés et réaliser des revêtements à structure fine avec des microstructures uniques et des performances élevées.Une torche à plasma bi-cathode (laboratoire LERMPS, UTBM, France) à mode d'injection axiale a été conçue et construite pour le LPPS, dont la puissance maximale en entrée du plasma a pu atteindre 80 kW. En utilisant cette nouvelle torche, soit la suspension à très fines particules, soit les poudres micrométriques ont pu être injectées dans le centre du plasma à basse pression. En conséquence, le transfert de chaleur et de masse entre le jet de plasma et les matériaux pulvérisés a été amélioré.La torche à plasma bi-cathode axiale a été appliquée d'abord pour pulvériser deux types de charges de YSZ, y compris la suspension de YSZ et les poudres agglomérées de YSZ. Les résultats ont indiqué que tous les revêtements YSZ présentaient des structures relativement denses en raison de la grande vitesse des particules sous faibles pressions. Les revêtements ont été composés des particules fondues, des particules agglomérées ainsi que du dépôt en phase vapeur. Il a été constaté que le degré de vaporisation de YSZ a été augmenté en utilisant une taille de particule plus fine, une pression ambiante plus basse, une distance de pulvérisation plus longue et une puissance de plasma plus élevée. En outre, tous les revêtements YSZ ont subi une transformation de phase significative d'une phase monoclinique à une phase tétragonale, et le degré de transformation était proportionnel au degré de vaporisation. Cependant, les propriétés mécaniques des revêtements résultants ont des comportements opposés. Les revêtements YSZ préparés à partir des particules agglomérées, qui avaient une plus grande taille de gouttelettes et moins de dépôt en phase vapeur, présentaient une dureté et un module de Young plus élevés que les revêtements YSZ fabriqués à partir d'une suspension fine.Une autre torche à plasma à haute énergie O3CP (Oerlikon Metco, Suisse) a été utilisée pour synthétiser in situ les revêtements de TiN sur des alliages de Ti-6Al-4V par projection de plasma réactive à très basse pression. Les poudres de Ti pur ont été pulvérisées dans une atmosphère de N2 sous une puissance de plasma d'entrée de 120 kW. Les revêtements TiN hybrides structurés ont été synthétisés, ce qui n'était pas le cas auparavant avec d'autres procédés de projection thermique. Il est connu que la réaction de nitruration se produisait non seulement dans le jet de plasma mais aussi sur le substrat. De plus, avec l'augmentation de la distance de pulvérisation, l'effet de nitruration a été affaibli et la structure hybride du revêtement de TiN a changé de laminaire dense en colonne poreuse, en function du degré de vaporisation supérieur, de la concentration de réactive inférieure et du substrat plus froid.. Néanmoins, ils ont également permis d'améliorer les propriétés mécaniques du substrat Ti-6Al-4V. / As an advanced thermal spray technology, low-pressure plasma spray (LPPS) allows obtaining high-quality coatings and can bridge the thickness gap between conventional thermal spray technologies and standard thin film processes. Moreover, LPPS permits to build uniform coatings with various microstructures; deposition takes place not only from liquid splats but also from nano-sized clusters as well as from the vapor phase depending on operational conditions. In order to further improve and develop the LPPS process, this research aims to combine it with the emerging suspension plasma spray and reactive plasma spray processes. It was expected to both provide two novel integrated processes and achieve fine-structured coatings with unique microstructures and high performance.A bi-cathode plasma torch (LERMPS lab, UTBM, France) with an axial injection mode was designed and built for LPPS, whose maximum input plasma power was able to reach to 80 kW. By using this new torch, either the very fine-particle suspension or the micro-sized powders was able to be injected into the plasma center under low pressures. As a result, the heat and mass transfer between the plasma jet and the sprayed materials were enhanced.The axial bi-cathode plasma torch was applied firstly to spray two kinds of YSZ feedstocks, including the YSZ suspension and the YSZ agglomerated powders. The results indicated that all the YSZ coatings exhibited relatively dense structures due to the high velocity of particles under low pressures. The coatings were composed of the melted particles, the agglomerated particles as well as the vapor deposition. It was found that the vaporization degree of YSZ was increased by using smaller particle size, lower ambient pressure, longer spraying distance and higher plasma power. In addition, all the YSZ coatings undergone a significant phase transformation from a monoclinic phase to a tetragonal phase, and the transformation degree was proportional to the vaporization degree. However, the mechanical properties of the resulting coatings had the opposite behaviors. The YSZ coatings prepared from the agglomerated particles, which had a bigger droplet size and less vapor deposition, showed a higher hardness and Young's modulus than the YSZ coatings fabricated from fine suspension did.Another high-energy plasma torch O3CP (Oerlikon Metco, Switzerland) was employed to in-situ synthesize the TiN coatings on Ti-6Al-4V alloys by reactive plasma spray under very low pressure. The pure Ti powders were sprayed into an N2 atmosphere under an input plasma power of 120 kW. The hybrid structured TiN coatings were synthesized, which was not previously achieved with other thermal spraying processes. It was known that the nitriding reaction occurred not only in the plasma jet but also on the substrate. Additionally, with increasing spraying distance, the nitriding effect was weakened, and the hybrid structure of TiN coating changed from dense laminar to porous columnar, according to the higher vaporization degree, lower reactant concentration and colder substrate. Nevertheless, they also were able to improve the mechanical properties of the Ti-6Al-4V substrate.
Identifer | oai:union.ndltd.org:theses.fr/2018UBFCA009 |
Date | 25 June 2018 |
Creators | Song, Chen |
Contributors | Bourgogne Franche-Comté, Liao, Hanlin |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds