Return to search

The Human Cell as an Environment for Horizontal Gene Transfer

Horizontal gene transfer (HGT) is now indisputably the predominant driving force, if not the sole force, behind speciation and the evolution of novelty in bacteria. Of all mechanisms of horizontal gene transfer (HGT), conjugation, the contact-dependent plasmid-mediated transfer of DNA from a bacterial donor to a recipient cell, is probably the most universal. First observed between bacteria, conjugation also mediates gene transfer from bacteria to yeast, plant and even animal cells. The range of environments in which bacteria naturally exchange DNA has not been extensively explored. The interior of the animal cell represents a novel and potentially medically relevant environment for gene transfer. Since most antibiotics are ineffective inside mammalian cells, our cells may be a niche for the evolution of resistance and virulence in invasive pathogens. Invading bacteria accumulate in vacuoles inside human cells, protected from antibiotics. Herein, I demonstrate the ability of intracellular Salmonella typhimurium to meet and exchange plasmid DNA by conjugation within animal cells, revealing the animal intracellular milieu as a permissive environment for gene exchange. This finding evokes a model for the simultaneous dissemination of virulence and antibiotic resistance within a niche protected from both antibiotics and the immune system and extends the variety of environments in which bacteria are known to exchange genes. Unlike conjugation between bacteria, conjugation between bacteria and eukaryotic cells requires the import of transferred DNA into the nucleus before the transferred genes can be expressed and inherited. Plant-cell nuclear transformation by the conjugation system of the Agrobacterium tumefaciens Ti plasmid is believed to be mediated by nuclear localization sequences (NLSs) carried within the proteins that accompany the T-DNA during transfer. Whether NLSs are equally important for transmission of other conjugative plasmids to eukaryotic cells is unknown. Herein, I demonstrate nuclear localization potential within the putative conjugative escort protein TraI of the IncPa plasmid RP4. In contrast, MobA, the putative escort protein from the IncQ plasmid RSF1010, lacked any clear nuclear localization potential. It is therefore likely that specific nuclear localization signals within conjugative proteins are not essential for nuclear transformation per se, although they may assist in efficient plasmid transmission.

Identiferoai:union.ndltd.org:ADTP/273759
Date January 2002
CreatorsFerguson, Gayle Christy
PublisherUniversity of Canterbury. Biological Sciences
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Gayle Christy Ferguson, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml

Page generated in 0.0018 seconds