La propagation des fissures courtes de fatigue dans un matériau polycristallin dépend fortement de la microstructure. Bien que de nombreuses études de caractérisation et de modélisation existent sur le sujet, la prédiction du chemin et de la vitesse de propagation de ce type de fissure n'est pas encore possible aujourd'hui.Afin de bien comprendre les mécanismes de propagation, la caractérisation in-situ d'un échantillon par la tomographie aux rayons X a été réalisée à l'ESRF en combinant deux techniques de caractérisation. La tomographie par Contraste de Diffraction (DCT) qui est une méthode non destructive permettant de caractériser en 3D la morphologie et l'orientation des grains constitutifs de la microstructure, à l'état non-déformé, et la tomographie par Contraste de Phase (PCT) qui permet d'obtenir la forme de fissure à divers étapes de la vie de l'éprouvette. Grâce à ces informations, il est possible de simuler la propagation de fissure en utilisant un maillage réaliste reconstruit à partir des images tomographiques. Dans ce travail, une étude de l'anisotropie de comportement élastique est effectuée dans un maillage microstructural 3D reconstruit à partir des images tomographiques. Cette étude permet de comparer les tenseurs de déformation élastique moyennés à chaque grain avec les mesures expérimentale. Ensuite, une nouvelle méthodologie est proposée pour simuler la propagation de fissure. Issue d'une simulation en plasticité cristalline, la direction et la vitesse de la propagation de fissure est déterminée par un post-traitement, ce qui permet de propager la fissure par remaillage. Cette méthode est appliquée dans un premier temps à un monocristal pré-fissuré pour prédire le trajet de fissuration en fonction des systèmes de glissement activés. L'ensemble de la démarche est enfin appliqué au polycristal complet imagé par tomographie. Le rôle du joint de grains et la vitesse de propagation sont également analysés. En comparant les résultats de simulation avec les mesures expérimentales, le critère de la propagation de fissure est discuté. / The short fatigue crack propagation in polycrystal materials depends strongly on microstructure. Although numerous studies of characterisation and of simulation, the prediction of the short fatigue crack propagation remains a challenge.In order to understand the mechanisms of short fatigue crack propagation, an in-situ characterisation by X-ray tomography was carried out at ESRF, using two techniques of tomography. Diffraction Contrast Tomography (DCT) that is a non-destructive method can be used to obtain 3D morphology and grain orientations in an undeformed state of polycrystal materials. Couple with Phase Contrast Tomography (PCT), it allows to characterise the short fatigue crack propagation at different loading stages. Access to this information, it is possible to simulate the short fatigue crack propagation using a 3D reel microstructural mesh reconstructed from the tomographic images.In this work, the elastic anisotropic behaviour in a 3D microstructural mesh is performed. The elastic strain tensors averaged in grains are also compared to the experimental measurements. Then, a new numerical approach is proposed to simulate crack propagation. From a crystal plasticity FE simulation, the crack growth direction is determined by a post processing. Next, the crack is propagated through remeshing. This approach is firstly applied to the single crystals, then to the polycrystal mesh reconstructed from the tomographic images. The grain boundary effects and the crack growth rate are also analysed. By comparing between simulation and experimental crack, the damage indicator is discussed at the end.
Identifer | oai:union.ndltd.org:theses.fr/2015ENMP0079 |
Date | 15 December 2015 |
Creators | Li, Jia |
Contributors | Paris, ENMP, Forest, Samuel, Proudhon, Henry |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0021 seconds