Le polylactide (PLA) est un polymère à la fois biodégradable et biosourcé focalisant l'attention des chercheurs pour le remplacement des plastiques conventionnels. A la température ambiante, le PLA est fragile et nécessite d’être modifié par plastification physique afin d’augmenter sa ductilité, mais dans le même temps sa rigidité chute fortement. Une alternative à cette plastification physique est la plastification par extrusion réactive. L’extrusion réactive du PLA avec l’acrylate de poly(éthylène glycol) (acrylPEG) donne lieu à un PLA plastifié nommé pPLA. Cette thèse a pour objectifs l’identification de la structure du pPLA et l’étude de son évolution lors de transformations thermomécaniques d’étirage et de recyclage. La structure du pPLA a été analysée par une approche multi-échelles et multidisciplinaire. L’acrylPEG polymérisant et formant des inclusions, est partiellement greffé au PLA et partiellement libre. De plus, les réactions conduisent à une légère réticulation de la matrice. La présence de plastifiant conduit à un bon équilibre entre rigidité et ductilité. Les mécanismes de déformation du pPLA sous étirage ont montré que les mécanismes d’orientation moléculaire sont prépondérants par à l’endommagement, qui lui prédomine dans le PLA. L’analyse du recyclage thermomécanique du pPLA a mis en évidence une dégradation du matériau dépendant du type de procédé utilisé. L’utilisation de la compression à chaud est le procédé le plus défavorable, conduisant à une dégradation plus importante du pPLA par rapport au PLA. Ces travaux ont permis de développer des méthodologies de caractérisation permettant une meilleure identification structurale des biopolymères / Polylactide (PLA), a biodegradable and bio-based polymer, raised researchers’ attention to replace conventional plastics. At room temperature, PLA is brittle and requires physical plasticization that increases its ductility but at the same time drastically decreases its stiffness. As an alternative, plasticization by reactive extrusion was recently developed. The reactive extrusion of PLA with acrylated poly(ethylene glycol) (acrylPEG) as plasticizer yields a plasticized PLA named pPLA. This thesis aims at identifying the structure of this pPLA and studying its evolution engendered by thermomechanical transformations as drawing and recycling. First, pPLA’s structural features are analyzed by a multi-scale and multi-disciplinary approach. pPLA is characterized by partially grafted and partially free inclusions of the polymerized plasticizer and a slightly crosslinked PLA matrix. These plasticizer inclusions lead to a material with a good stiffness-ductility balance. Second, the deformation mechanisms of pPLA upon drawing indicate that chain orientation mechanisms are predominant compared to damage, the latter dominating deformation in PLA. Third, the thermomechanical recycling of pPLA shows that degradation is dependent on the type of processing step. Compression-molding is detrimental to pPLA inducing after recycling a higher degradation compared to PLA. This thesis releases new characterization methodologies enabling a better identification of biopolymer structural features
Identifer | oai:union.ndltd.org:theses.fr/2017LORR0156 |
Date | 02 October 2017 |
Creators | Brüster, Berit |
Contributors | Université de Lorraine, André, Stéphane, Addiego, Frédéric |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds