Return to search

Development and application of novel genetic transformation technologies in maize (Zea mays L.)

Plant genetic engineering approaches are of pivotal importance to both basic and applied research. However, rapid commercialization of genetically engineered crops, especially maize, raises several ecological and environmental concerns largely related to transgene flow via pollination. In most crops, the plastid genome is inherited uniparentally in a maternal manner. Consequently, a trait introduced into the plastid genome would not be transferred to the sexually compatible relatives of the crops via pollination. Thus, beside its several other advantages, plastid transformation provides transgene containment, and therefore, is an environmentally friendly approach for genetic engineering of crop plants. Reliable in vitro regeneration systems allowing repeated rounds of regeneration are of utmost importance to development of plastid transformation technologies in higher plants. While being the world’s major food crops, cereals are among the most difficult-to-handle plants in tissue culture which severely limits genetic engineering approaches. In maize, immature zygotic embryos provide the predominantly used material for establishing regeneration-competent cell or callus cultures for genetic transformation experiments. The procedures involved are demanding, laborious and time consuming and depend on greenhouse facilities. In one part of this work, a novel tissue culture and plant regeneration system was developed that uses maize leaf tissue and thus is independent of zygotic embryos and greenhouse facilities. Also, protocols were established for (i) the efficient induction of regeneration-competent callus from maize leaves in the dark, (ii) inducing highly regenerable callus in the light, and (iii) the use of leaf-derived callus for the generation of stably transformed maize plants. Furthermore, several selection methods were tested for developing a plastid transformation system in maize. However, stable plastid transformed maize plants could not be yet recovered. Possible explanations as well as suggestions for future attempts towards developing plastid transformation in maize are discussed. Nevertheless, these results represent a first essential step towards developing chloroplast transformation technology for maize, a method that requires multiple rounds of plant regeneration and selection to obtain genetically stable transgenic plants.
In order to apply the newly developed transformation system towards metabolic engineering of carotenoid biosynthesis, the daffodil phytoene synthase (PSY) gene was integrated into the maize genome. The results illustrate that expression of a recombinant PSY significantly increases carotenoid levels in leaves. The beta-carotene (pro-vitamin A) amounts in leaves of transgenic plants were increased by ~21% in comparison to the wild-type. These results represent evidence for maize to have significant potential to accumulate higher amounts of carotenoids, especially beta-carotene, through transgenic expression of phytoene synthases.

Finally, progresses were made towards developing transformation technologies in Peperomia (Piperaceae) by establishing an efficient leaf-based regeneration system. Also, factors determining plastid size and number in Peperomia, whose species display great interspecific variation in chloroplast size and number per cell, were investigated. The results suggest that organelle size and number are regulated in a tissue-specific manner rather than in dependency on the plastid type. Investigating plastid morphology in Peperomia species with giant chloroplasts, plasmatic connections between chloroplasts (stromules) were observed under the light microscope and in the absence of tissue fixation or GFP overexpression demonstrating the relevance of these structures in vivo. Furthermore, bacteria-like microorganisms were discovered within Peperomia cells, suggesting that this genus provides an interesting model not only for studying plastid biology but also for investigating plant-microbe interactions. / Pflanzliche Gentechnik spielt sowohl in der Grundlagenforschung als auch der Biotechnologie eine große Rolle. Allerdings bringt die landwirtschaftliche Nutzung gentechnisch veränderter Pflanzen (GM) ökologische Umweltrisiken mit sich, wie z.B. die Kreuzung GM Pflanzen mit sexuell kompatiblen Verwandten durch Fremdbestäubung. Gegenüber den Kerntransformanden haben Plastidtransformanden für die biotechnologische Nutzung große Vorteile, unter anderem da die Vererbung des Plastidgenoms bei höheren Angiospermen ausschließlich maternal geschieht. Somit kann ein Gentransfer transplastomischer Pflanzen über Pollen ausgeschlossen werden.
Zuverlässige in-vitro-Regenerationssysteme, die wiederholte Regenerationsrunden erlauben, sind von großem Wert für die Etablierung der Plastidentransformationstechnologie. Trotz Sein die Hauptgetreidenahrungsmittel der Welt, Zerealie Pflanzen gehören zu schwierigsten in der Gewebekultur zu handeln, die Annäherungen der genetischen Technik streng begrenzt. Im Mais werden hauptsächlich junge zygotische Embryonen für die Herstellung der Regenerations-kompetenten Kalluskulturen benutzt. Der Arbeitsaufwand dafür ist hoch und die Prozedur schwierig und von den Gewächshausbedingungen abhängig.
Im Rahmen dieser Arbeit wurden neue Gewebekultursysteme für Mais etabliert, welches junge Blattgewebe nutzt und somit unabhängig von Embryonen und Gewächshaus ist. Weiterhin wurden die aus Blättern gebildeten Kalluskulturen für die Generierung der genetisch veränderten Maispflanzen benutzt. Ebenso wurden verschiedene Selektionsmethoden für die Entwicklung eines Plastidentransformationssystems in Mais getestet. Jedoch konnten keine transplastomischen Maispflanzen erhalten werden. Sowohl die möglichen Ursachen als auch Vorschläge für weiterführende Versuche diesbezüglich werden im Rahmen dieser Arbeit diskutiert. Dennoch stellt diese Arbeit den ersten wesentlichen Schritt für die Entwicklung eines Plastidentransformationssystems in Mais vor.
In einem zweiten Teil dieses Projekts wird die erfolgreiche Integration der Narzissen Phytoene Synthase in das Maisgenom durch das neu entwickelte nukleäre Transformationssystem gezeigt. Dadurch konnte eine signifikante Steigerung um 17% des Gesamtcarotinoid- und 21% des Beta-Carotengehalts in Maisblättern beobachtet werden. Schließlich wurden Fortschritte für die Entwicklung eines Transformationssystems für Peperomia (Piperaceae) durch die Etablierung eines Regenerationssystems aus Blättern gemacht. Außerdem wurden Faktoren, die die Plastidengröße und –zahl bestimmen, untersucht. Diese Ergebnisse geben Hinweise darauf, dass die Organellengröße und –zahl eher gewebespezifisch als in Abhängigkeit vom Plastidentyp reguliert wird.

Identiferoai:union.ndltd.org:Potsdam/oai:kobv.de-opus-ubp:1457
Date January 2007
CreatorsAhmad Abadi, Mohammad
PublisherUniversität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät. Institut für Biochemie und Biologie
Source SetsPotsdam University
LanguageEnglish
Detected LanguageEnglish
TypeText.Thesis.Doctoral
Formatapplication/pdf
Rightshttp://opus.kobv.de/ubp/doku/urheberrecht.php

Page generated in 0.0025 seconds