In realizing a portable chemical analysis system, adequate partitioning of a reusable component and a disposable is required. For successful implementation of micromachined sensors in an instrument, reliable methods for interconnection and interface are in great demand between these two major parts. This thesis work investigates interconnection methods of micromachined chip devices, a hybrid fluidic interface system, and measurement circuitry for completing instrumentation. The interconnection method based on micromachining and injection molding techniques was developed and an interconnecting microfluidic package was designed, fabricated and tested. Alternatively, a plug-in type design for a large amount of sample flow was designed and demonstrated. For the hybrid interface, sequencing of the chemical analysis was examined and accordingly, syringe containers, a peristaltic pump and pinch valves were assembled to compose a reliable meso-scale fluidic control unit. A potentiostat circuit was modeled using a simulation tool. The simulated output showed its usability toward three-electrode electrochemical microsensors. Using separately fabricated microsensors, the final instrument with two different designs--flow-through and plug-in type was tested for chlorine detection in water samples. The chemical concentration of chlorine ions could be determined from linearly dependent current signals from the instrument.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-1481 |
Date | 01 January 2005 |
Creators | Palsandram, Naveenkumar Srinivasaiah |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.002 seconds