Return to search

Utvärdering av prestanda för en pneumatisk tork : Praktisk mätning av en pilotanläggnings torkningseffektivitet / Evaluation of performance in a pneumatic dryer : Practical measurements of drying efficiency in a pilot plant.

Biomassa är en växande energikälla i samhället. Biomassa så som sågspån behöver ofta torkas och pelleteras innan det kan användas som energikälla vid förbränning. Sågspån torkas innan pelleteringen för att kunna ge ett bra värmevärde och för att kunna förbrännas utan ökade halter av utsläpp. I takt med ökad användning av detta bränsle finns det en ökad efterfrågan på energieffektiva torkningsmetoder. På Karlstad Universitet har det därför byggts en pilotanläggning av en pneumatisk tork med syfte att fungera som ett steg i en energieffektiv torkningsmetod kallad ”Two Step Drying Technique” eller TSDT. Det här arbetet har handlat om att utvärdera effektivitetsmått och driftinformation för torken på Karlstads Universitet. Torken har fått namnet PD-KaU som står för ”Pneumatic Dryer at Karlstad University”. Genom praktiska mätningar av PD-KaU:s prestanda vid torkning av sågspån med uppvärmd luft har effektivitetsmåtten  och  beräknats vid olika driftfall. Även skillnader i torr- och våttemperaturer i olika delar av torken har utvärderats. En effektbalans har använts för att kontrollera mätningarnas stabilitet. De olika driftfallen fås genom variation av torkningsparametrar så som mängden sågspån som torkas, ca 1 och 2 kg torrsubstans per minut, och variation av luftens temperatur, 80, 100 och 120 °C, samt hastighet genom torken, 6, 8 och 10 m/s. Även 12 och 14 m/s testades vid 80 °C. Torkens minimala fluidiseringshastighet för sågspån har beräknats och minimala hastigheten som krävs för att sågspånet ska transporteras genom torkens rörsystem har mätts. Mätningar på sågspånets fukthalter före och efter torken tillsammans med massflöden sågspån genom torken har gjorts för alla driftfall. Använd effekt från överhettare och fläkt som finns i anslutning till torken har också mätts och dessa mätningar ligger till grund för beräkningarna av  och . Med hjälp av elektronisk mätning av torra temperaturer och tryckfall över systemet har också våttemperaturer i olika delar av systemet kunnat beräknas. All data från dessa mätningar har också använts till effektbalansen. Vid massflöden på ca 1 kg/min TS sågspån genom torken är  som högst om hastigheten på luften är låg. Högsta  för de driftfall som testats vid detta massflöde fås när lufttemperaturen är 120 °C och lufthastigheten är kring 8,6 m/s. Genom öka på rörsystemets längd i torken skulle ett högre  kunna uppnås vid högre hastigheter. Vid ett massflöde på ca 2 kg/min fås högsta  vid lufttemperaturen 100 °C och lufthastighet kring 8,3 m/s. Om höga massflöden sågspån används kommer sågspånet i större grad i kontakt med luften och  är högt oberoende av lufthastigheten i de intervall som testats. Optimala lufttemperaturen visade sig vara vid 100 °C.  är som lägst vid låga hastigheter och höga massflöden. Lägsta värdet på  för båda massflödena fås när lufttemperaturen var 120 °C och lufthastigheten 7,0 m/s. Genom att minska på rörsystemets längd skulle  kunna minska. Utvärderingen av våttemperaturen visar att det mesta av torkningen sker i början av systemet. / Biomass is a growing source of energy in our society. Biomass such as sawdust often needs to be dried and pelletized before it can be burnt to produce energy. Sawdust is dried before pelleting in order to give a good calorific heat value and to be able to be incinerated without increased levels of emissions. With increased use of this fuel there is an increasing demand for energy efficient drying methods. A pilot plant of a pneumatic dryer has therefore been built at Karlstad University with a purpose to serve as a step in an energy efficient drying method called “Two Step Drying Technique” or TSDT. This thesis aimed to evaluate performance and operating information for the dryer at Karlstad University. The dryer has been named PD-KaU which stands for "Pneumatic Dryer at Karlstad University." Through practical measurements of the PD-KaU's performance when drying sawdust with heated air, efficiency indices  and  has been calculated at various operating conditions. Differences in the dry and wet-bulb temperature in different parts of the dryer have also been evaluated. An energy balance, or more correctly a power balance has been used to evaluate the stability of the measurements. The various operating conditions is obtained by variation of different drying parameters such as the amount of sawdust dried, about 1 and 2 kg solids per minute, and the variation of air temperature, 80, 100 and 120 ° C, and the speed through the dryer, 6, 8 and 10 m/s. Also, 12 and 14 m/s were tested at 80 ° C. The minimum fluidizing velocity for the dryer when using sawdust has been calculated and the minimum speed required for the transportation of sawdust through the dryer tubes have been measured. Measurements on the sawdust moisture levels before and after the dryer along with the mass flow of sawdust through the dryer have been made for all operating conditions. The power from the super heater and fan that is used with the dryer has also been measured and these measurements together with the moisture levels and mass flows are used for calculating  and. By using electronic equipment measurements of dry temperatures and pressure drop across the system has also been possible and they have been used to calculate the wet-bulb temperature in different parts of the system. All data from these measurements were also used for the power balance. At mass flow rates of about 1 kg/min solids of sawdust through the dryer  is highest if the speed of the air is low. The highest value on  for the various operating conditions at this mass flow rate was found to be at an air temperature of 120 °C and air speed of 8,6 m/s. By increasing the length of tubing in the dryer, a higher  be achieved at higher speeds. If 2 kg/min of solids are put into the system the sawdust comes in contact with the air to a greater extent and  is highly independent of the air velocity in the ranges tested. At this higher mass flow rate the highest value of  was found to be at an air temperature of 100 °C and an air speed of 8,3 m/s Optimum air temperature was found to be at 100° C.  is lowest at low speeds and high mass flows. The lowest value for  for both tested mass flow rates was found to be when the air temperature was 120 °C and the air speed was 7,0 m/s. By reducing the tubing length SPC could be reduced. The evaluation of the wet-bulb temperature shows that most of the drying takes place in the beginning of the system.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-28544
Date January 2013
CreatorsGustafsson, Marcus
PublisherKarlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013)
Source SetsDiVA Archive at Upsalla University
LanguageSwedish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds