Minskad tillgång på fossila material och ökade energibehov i värden skapar ett behov av att utveckla alternativa och miljömässigt hållbara lösningar. Biobränsle har därför växt till en av de viktigaste förnyelsebara energikällorna i målet mot ett koldioxidneutralt samhälle. Dock skapar det obearbetade biobränslet problem, på grund av den höga fuktkvoten, mellan 50-150 %. Som en följd finns ett torkbehov som måste lösas på ett miljö- och energieffektivt sätt. Idag står torkningen av biomaterial innan pelletering för 25 % av den totala kostnaden vid pelletstillverkning. Kostnaden för att torka biomaterialet gör det viktigt att effektivisera torkningen, samtidigt bidrar torkningen till utsläpp av miljöfarliga ämnen såsom terpener. Torkningen måste dessutom ske med jämn kvalitet, så att biomaterialet håller konstant och homogen fukthalt för att möjliggöra effektiv processering. Beroende på vad biomaterialet skall användas till krävs olika torkhalter. Ideal fuktkvot för förbränning är till exempel 15-25 %, medan för pyrolys skall fuktkvoten helst ligga mellan 5-10 % för en effektiv och högkvalitativ process. För pellets skall fuktkvoten idealt ligga mellan de två nämnda processerna, nämligen 8-12 %. Tre vanliga torkartyper för torkning av biomaterial är roterande torktrumma, bandtork och pneumatisk tork. I detta arbete bestäms tryckfallet i en pneumatisk tork. Pneumatisk tork fungerar genom att ett luftflöde transporterar och torkar ett vått material. Fördelarna med en pneumatisk tork är den korta torkningstiden, samtidigt som materialet får en jämn fuktkvot. Den korta torktiden bidrar dessutom med att utsläpp av lättflyktiga organiska föreningar (VOC) såsom terpener är små jämfört med de andra två nämnda torkarna, samt att brandrisken är låg. Kostnaden för pneumatisk torkning är dock högre på grund av det höga gasflödet som krävs jämfört med materialflödet, samt svårigheter med att effektivt separera det torkade materialet från luftflödet. Det skapades en modell som predikterade tryckfallet i en pneumatisk tork, och verifiera det simulerade tryckfallet mot ett praktiskt uppmätt tryckfall på en pneumatisk torkanläggning. På detta sätt skapades en modell som kan undersöka olika material- och luftflöden, och hur de påverkar tryckfallet. Arbetet ger förslag på hur tryckfall och hastigheter kan beräknas dels i regionen för accelerationen av materialflödet, vid stationärt flöde samt i U-böjar. För att anpassas till det praktiskt uppmätta tryckfallet användes därefter ett korrigeringssamband som skapades genom observationer från en kalibrerande körning för den pneumatiska torkanläggningen. Resultaten av modellen stämmer överens med forskning inom pneumatisk transport och torkning. Modellen gav med hjälp av korrigeringssambandet ett mycket bra resultat över hur tryckförlusterna varierar över sträckan i en pneumatisk transport. Tryckfallet var som väntat större för högre material- eller luftflöden. Då sågspånet accelererade till sin maxhastighet på en sträcka mellan 0,4-0,6 meter, beroende på luftflödets hastighet, krävs fler mätpunkter i regionen mellan 0-0,6 meter för att bättre kunna konstatera exakt hur tryckfallet under spånets acceleration sker. Skillnaden mellan det praktiskt uppmätta och det simulerade tryckfallet var aldrig mer än 7,0 % för de flöden som undersökts i detta arbete. Då man bortsåg från mätpunkten vid 0,4 meter var skillnaden mellan uppmätt och simulerat tryckfall aldrig mer än 4,4 %. Om värmeöverföringen mellan materialet och luften tas med i modellen, kan den användas för att prediktera energiåtgång och behövd längd för att uppnå önskad fuktkvot på materialet. / The reduced availability of fossil fuels and the increasing energy demand in the world creates a need to develop solutions that are financial and environment sustainable. Biofuels has grown to become one of the most important renewable energy sources in the target towards a carbon neutral society. Although the high moisture content ranging between 50-150% for unprocessed biofuels causes problems. As a result, there is a drying demand that has to be solved in an energy efficient and environmental friendly way. As of today, the drying of biomaterials pre pelletizing stands for 25 % of the total cost in pellets production. The cost to dry biomaterials makes it important to improve the efficiency of the drying process. Simultaneously the drying process causes emissions of hazardous substances such as terpenes. The drying must also in a consistent quality so that the biomaterial is made to hold constant and uniform moisture content to enable efficient processing. Depending on the usage of the biomaterial, there is a different demand of the final moisture content before processing. The ideal moisture content for combustion for example ranges between 15-25 %, while pyrolysis would rather have moisture content between 5-10 % for effective and high quality processing. The ideal moisture content pre pelletizing is between the two mentioned processes, namely 8-12 %. Three common dryers used to dry biomaterials are rotary dryers, conveyor dryer and pneumatic dryer. In this thesis the pressure drop in a pneumatic dryer is predicted. A pneumatic dryer a airflow simultaneously conveys and dries the wet material. Perks of a pneumatic dryer is the short amount of time required to dry the material, and simultaneously deliver uniform moisture content. The short time required also contributes to minimize the emissions of volatile organic compounds (VOC) like terpenes compared to the other two mentioned types of dryers and the risk of fire during the drying process. Although because of the high airflow compared to the material flow, pneumatic drying is costly and has difficulties with separating the dried material from the airflow. A model to predict the pressure drop in a pneumatic dryer was created. The simulated pressure drop was then verified against a practically measured pressure drop for a pneumatic dryer. In this way a model was created to examine the pressure drop for a variety of material- and airflows. The thesis suggests how to calculate the pressure drop and velocities for the accelerating region, steady state and U-bend of pneumatic conveying. To better predict the pressure drop according to the actually measured pressure drop a correction equation was presented. The results of the model are consistent with the research in pneumatic conveying and drying. The model gave with the usage of the correction equation a very good prediction on how the pressure drop varied over the length of the pneumatic conveying. The pressure drop was as expected larger as the airflow or material flow increased. As the sawdust accelerated on 0,4-0,6 meters there is required more points of measurements in the region between 0-0,6 meters to better establish exactly how the pressure drop in the accelerating region varies. The difference between the practically measured and the simulated pressure drop was never exceeded 7,0 % for the different flows investigated in this thesis. When disregarding the measure point at 0,4 meters the difference between measured and simulated pressure drop never exceeded 4,4 %. If one would include the heat transfer between the material- and airflow, the model could be used to predict the energy consumption and required length to achieve desired moisture content on the material.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kau-32732 |
Date | January 2014 |
Creators | Eriksson, Sebastian |
Publisher | Karlstads universitet, Avdelningen för energi-, miljö- och byggteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0051 seconds