[pt] Simulação de reservatório, que por meio de equações complexas emula fluxo em modelos de reservatório, é primordial à indústria de Óleo e Gás. Estimando o comportamento do reservatório dadas diferentes condições de entrada, permite que especialistas otimizem diversos parâmetros na etapa de projeto de campos de petróleo. Entretanto, o tempo computacional necessário para simulações está diretamente correlacionado à complexidade do modelo, que cresce exponencialmente a cada dia que se passa, já que modelos mais detalhados são necessários dada a busca por maior refinamento e redução de incertezas. Deste modo, técnicas de otimização que poderiam
significativamente melhorar os resultados de desenvolvimentos de campo podem se tornar inviáveis. Este trabalho propõe o uso de modelos generativos profundos para a geração de dados de reservatório, que podem então ser utilizados para múltiplos propósitos. Modelos generativos profundos são sistemas capazes de modelar estruturas de dados complexas, e que após treinamento robusto são capazes de amostrar dados que seguem a distribuição do conjunto de dados original. A presente aplicação foca em poços inteligentes, uma tecnologia de completação que traz diversas vantagens, dentre as quais uma melhor habilidade de monitoramento e gerenciamento de reservatórios, apesar de carregar um aumento significativo no investimento do projeto. Assim, essas otimizações previamente mencionadas se tornam indispensáveis, de forma a garantir a adoção da tecnologia, junto ao seu máximo retorno. De modo a tornar otimizações de controle de poços inteligentes viáveis dentro de um prazo razoável, redes generativas adversariais são aqui usadas para
amostrar conjuntos de dados após um número relativamente pequeno de cenários simulados. Esses dados são então utilizados para o treinamento de aproximadores, algoritmos capazes de substituir o simulador de reservatório e acelerar consideravelmente metodologias de otimização. Estudos de caso
foram realizados em modelos referência da indústria, tanto relativamente simples quanto complexos, comparando arquiteturas de redes e validando cada passo da metodologia. No modelo complexo, mais próximo de um cenário real, a metodologia foi capaz de reduzir o erro do aproximador de uma média de 18.93 por cento, para 9.71 por cento. / [en] Reservoir simulation, which via complex equations emulates flow in reservoir models, is paramount to the Oil e Gas industry. By estimating the behavior of the reservoir given different input conditions, it allows specialists to optimize various parameters in the oilfield project stage. Alas, the computational time needed for simulations is directly correlated to the complexity of the model, which grows exponentially with each passing day as more intricate and detailed reservoir models are needed, seeking better refinement and uncertainty reduction. As such, optimization techniques which could greatly improve the results of field developments may be made unfeasible. This work proposes the use of deep generative models for the generation of reservoir data, which may then be used for multiple purposes. Deep generative models are systems capable of modeling complex data structures, which after robust training are capable of sampling data following the same distribution of the original dataset. The present application focuses on smart wells, a technology for completions which brings about a plethora of advantages, among which the better ability for reservoir monitoring and management, although also carrying a significant increase in project investment. As such, these previously mentioned optimizations turn indispensable as to guarantee the adoption of the technology, along with its maximum possible return. As to make smart well control optimizations viable within a reasonable time frame, generative adversarial networks are here used to sample datasets after a
relatively small number of simulated scenarios. These datasets are then used for the training of proxies, algorithms able to substitute the reservoir simulator and considerably speed up optimization methodologies. Case studies were done in both relatively simple and complex industry benchmark
models, comparing network architectures and validating each step of the methodology. In the complex model, closest to a real-world scenario, the methodology was able to reduce the proxy error from an average of 18.93 percent, to 9.71 percent.
Identifer | oai:union.ndltd.org:puc-rio.br/oai:MAXWELL.puc-rio.br:48317 |
Date | 27 May 2020 |
Creators | ALLAN GURWICZ |
Contributors | MARCO AURELIO CAVALCANTI PACHECO, MARCO AURELIO CAVALCANTI PACHECO |
Publisher | MAXWELL |
Source Sets | PUC Rio |
Language | English |
Detected Language | Portuguese |
Type | TEXTO |
Page generated in 0.002 seconds