Les gyroscopes laser à gaz constituent une solution technique de haute performances dans les problématiques de navigation inertielle. Néanmoins, pour de très faibles vitesses de rotation, les petites imperfections des miroirs de la cavité optique font que les deux faisceaux contra-propageant sont verrouillés en phase. En conséquence, les mesures en quadrature de leur différence de phase ne permettent plus de remonter directement aux vitesses de rotation à l'intérieur d'une zone autour de zéro, dite zone aveugle statique, ou, si l'on utilise une procédure d'activation mécanique, dite zone aveugle dynamique. Ce travail montre qu'il est néanmoins possible, en utilisant des méthodes issues du filtrage et de l'estimation, de remonter aux vitesses de rotation mêmes si ces dernières sont en zone aveugle. Pour cela, on part d'une modélisation physique de la dynamique que l'on simplifie par des techniques de perturbations singulières pour en déduire une généralisation des équations de Lamb. Il s'agit de quatre équations différentielles non-linéaires qui décrivent la dynamique des intensités et des phases des deux faisceaux contra-propageant. Une étude qualitative par perturbations régulières, stabilité exponentielle des points d'équilibre et applications de Poincaré permet de caractériser les zones aveugles statiques et dynamiques en fonction des imperfections dues aux miroirs. Il est alors possible d'estimer en ligne avec un observateur asymptotique fondé sur les moindre carrés récursifs ces imperfections en rajoutant aux deux mesures en quadrature celles des deux intensités. La connaissance précise de ces imperfections permet alors de les compenser dans la dynamique de la phase relative, et ainsi d'estimer les rotations en zone aveugle. Des simulations numériques détaillées illustrent l'intérêt de ces observateurs pour augmenter la précision des gyroscopes à gaz. / Gaz ring laser gyroscopes provide a high performance technical solution for inertial navigation. However, for very low rotational speeds, the mirrors imperfections of the optical cavity induce a locking phenomena between the phases of the two counter-propagating Laser beams. Hence, the measurements of the phase difference can no longer be used when the speed is within an area around zero, called lock-in zone, or,if a procedure of mechanical dithering is implemented, dithering lock-in zone. Nevertheless, this work shows that it is possible using filtering and estimation methods to measure the speed even within the lock-in zones. To achieve this result, we exploit a physical modeling of the dynamics that we simplify, using singular perturbation techniques, to obtain a generalization of Lamb's equations. There are four non-linear differential equations describing the dynamics of the intensities and phases of the two counter-propagating beams. A qualitative study by regular perturbation theory, exponential stability of the equilibrium points and Poincaré maps allows a characterisation of the lock-in zones according to the mirrors imperfections. It is then possible to estimate online, with an asymptotic observer based on recursive least squares, these imperfections by considering the additional measurements of the beam intensities. Accurate knowledge of these imperfections enables us to compensate them in the dynamic of the relative phase, and thus to estimate rotational speeds within the lock-in zones. Detailed numerical simulations illustrate the interest of those observers to increase the accuracy of gas ring laser gyroscopes.
Identifer | oai:union.ndltd.org:theses.fr/2016PSLEM058 |
Date | 02 December 2016 |
Creators | Badaoui, Noad |
Contributors | Paris Sciences et Lettres, Rouchon, Pierre, Martin, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds