Return to search

Admissibility and Ap classes for radial weights in Rn

In this thesis we study radial weights on Rn. We study two radial weights with different exponent sets. We show that they are both 1-admissible by utilizing a previously shown sufficient condition, for radial weights to be 1-admissible, together with some results connecting exponent sets and Ap weights. Furthermore applying a similar method on a more general radial weight, we manage to improve the previously shown sufficient condition for radial weights to be 1-admissible. Finally we show for one of these two weights that even though it is 1-admissible, whether or not it belongs to some class Ap depends both on the value of p and on the dimension n. Additionally, both of these weights as well as another simple weight are, at least in some dimensions n, not A1 even though they are 1-admissible.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-196187
Date January 2023
CreatorsBladh, Simon
PublisherLinköpings universitet, Analys och didaktik, Linköpings universitet, Tekniska fakulteten
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds