In this thesis we study radial weights on Rn. We study two radial weights with different exponent sets. We show that they are both 1-admissible by utilizing a previously shown sufficient condition, for radial weights to be 1-admissible, together with some results connecting exponent sets and Ap weights. Furthermore applying a similar method on a more general radial weight, we manage to improve the previously shown sufficient condition for radial weights to be 1-admissible. Finally we show for one of these two weights that even though it is 1-admissible, whether or not it belongs to some class Ap depends both on the value of p and on the dimension n. Additionally, both of these weights as well as another simple weight are, at least in some dimensions n, not A1 even though they are 1-admissible.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-196187 |
Date | January 2023 |
Creators | Bladh, Simon |
Publisher | Linköpings universitet, Analys och didaktik, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds