The Poincare-Miranda Theorem is a topological result about the existence of a zero of a function under particular boundary conditions. In this thesis, we explore proofs of the Poincare-Miranda Theorem that are discrete in nature - that is, they prove a continuous result using an intermediate lemma about discrete objects. We explain a proof by Tkacz and Turzanski that proves the Poincare-Miranda theorem via the Steinhaus Chessboard Theorem, involving colorings of partitions of n-dimensional cubes. Then, we develop a new proof of the Poincare-Miranda Theorem that relies on a polytopal generalization of Sperner's Lemma of Deloera - Peterson - Su. Finally, we extend these discrete ideas to attempt to prove the existence of a zero with the boundary condition of Morales.
Identifer | oai:union.ndltd.org:CLAREMONT/oai:scholarship.claremont.edu:hmc_theses-1048 |
Date | 12 May 2013 |
Creators | Ahlbach, Connor Thomas |
Publisher | Scholarship @ Claremont |
Source Sets | Claremont Colleges |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HMC Senior Theses |
Rights | © 2013 Connor Ahlbach |
Page generated in 0.0017 seconds