Two-stage stochastic programming problem with PDE constraint, specially elliptic equation is formulated. The computational scheme is proposed, whereas the emphasis is put on approximation techniques. We introduce method of approximation of random variables of stochastic problem and utilize suitable numerical methods, finite difference method first, then finite element method. There is also formulated a mathematical programming problem describing a membrane deflection with random load. It is followed by determination of the acceptableness of using stochastic optimization rather than deterministic problem and assess the quality of approximations based on Monte Carlo simulation method and the theory of interval estimates. The resulting mathematical models are implemented and solved in the general algebraic modeling system GAMS. Graphical and numerical results are presented.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:228544 |
Date | January 2009 |
Creators | Čajánek, Michal |
Contributors | Mrázková, Eva, Popela, Pavel |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0014 seconds