Return to search

Extensão do Método de Predição do Vizinho mais Próximo para o modelo Poisson misto / An Extension of Nearest Neighbors Prediction Method for mixed Poisson model

Várias propostas têm surgido nos últimos anos para problemas que envolvem a predição de observações futuras em modelos mistos, contudo, para os casos em que o problema trata-se em atribuir valores para os efeitos aleatórios de novos grupos existem poucos trabalhos. Tamura, Giampaoli e Noma (2013) propuseram um método que consiste na computação das distâncias entre o novo grupo e os grupos com efeitos aleatórios conhecidos, baseadas nos valores das covariáveis, denominado Método de Predição do Vizinho Mais Próximo ou NNPM (Nearest Neighbors Prediction Method), na sigla em inglês, considerando o modelo logístico misto. O objetivo deste presente trabalho foi o de estender o método NNPM para o modelo Poisson misto, além da obtenção de intervalos de confiança para as predições, para tais fins, foram propostas novas medidas de desempenho da predição e o uso da metodologia Bootstrap para a criação dos intervalos. O método de predição foi aplicado em dois conjuntos de dados reais e também no âmbito de estudos de simulação, em ambos os casos, obtiveram-se bons desempenhos. Dessa forma, a metodologia NNPM apresentou-se como um método de predição muito satisfatório também no caso Poisson misto. / Many proposals have been created in the last years for problems in the prediction of future observations in mixed models, however, there are few studies for cases that is necessary to assign random effects values for new groups. Tamura, Giampaoli and Noma (2013) proposed a method that computes the distances between a new group and groups with known random effects based on the values of the covariates, named as Nearest Neighbors Prediction Method (NNPM), considering the mixed logistic model. The goal of this dissertation was to extend the NNPM for the mixed Poisson model, in addition to obtaining confidence intervals for predictions. To attain such purposes new prediction performance measures were proposed as well as the use of Bootstrap methodology for the creation of intervals. The prediction method was applied in two sets of real data and in the simulation studies framework. In both cases good performances were obtained. Thus, the NNPM proved to be a viable prediction method also in the mixed Poisson case.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-31052017-125548
Date28 March 2017
CreatorsHelder Alves Arruda
ContributorsViviana Giampaoli, Mariana Rodrigues Motta, Karin Ayumi Tamura
PublisherUniversidade de São Paulo, Estatística, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0022 seconds