<p>A solid phase extraction (SPE) method was developed for simultaneous extraction of dicarboxylic acids and diols formed during hydrolysis of poly(butylene succinate), PBS, and poly(butylene adipate), PBA. The developed SPE method and subsequent GC-MS analysis were used to extract, identify and quantify low molecular weight products migrating from linear and branched poly(butylene adipate) (PBA) and poly(butylene succinate) (PBS) during aging in aqueous media. The combination of SPE and GC-MS proved to be a sensitive tool, able to detect small differences in the degradation rate during early stages of hydrolysis before any significant differences were observed by weight loss and molecular weight measurements. The detected low molecular weight products included monomers i.e. adipic acid and 1,4-butanediol for the PBA polymers and succinic acid and 1,4-butanediol for PBS. Several dimers and trimers i.e. hydroxybutyl adipate, hydroxybutyl succinate, di(hydroxybutyl) adipate, di(hydroxybutyl) succinate and hydroxybutyl disuccinate were also detected. Best extraction efficiency for 1,4-butanediol and succinic acid was achieved with a hydroxylated polystyrene-divinylbenzene resin as solid phase. Linear range for the extracted analytes was 1-500 ng/ml for adipic acid and 2-500 ng/ml for 1,4-butanediol and succinic acid. Detection and quantification limits for all analytes were between 1-2 ng/ml (S/N=3) and 2-7 ng/ml (S/N=10) respectively. Relative standard deviations were between 3 % and 7 %. Comparison of measured weight loss and the amount of monomeric products showed that weight loss during early stages of hydrolysis was mainly caused by the release of water-soluble oligomers that on prolonged ageing were further hydrolyzed to monomeric species. Significant differences in degradation rate could be assigned to degree of branching, molecular weight, aging temperature and degradation medium.</p><p>Linear and branched PBA was mixed with PVC in solution cast films to study the effects of molecular weight and branching on plasticizer efficiency. Used as polymeric plasticizer, PBA formed a semi-miscible two-phase system with PVC where the amorphous part exhibited one single glass transition temperature and the degree of polyester crystallinity was dependent on molecular weight, degree of branching and blend composition. Plasticizing efficiency was favored by higher degree of branching and a 40 weight-percent polyester composition.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-325 |
Date | January 2005 |
Creators | Lindström, Annika |
Publisher | KTH, Fibre and Polymer Technology |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, comprehensive summary, text |
Relation | Trita-FPT-Report, 1652-2443 ; 2004:43 |
Page generated in 0.0021 seconds