Flat dendrimers, consisting of a hexavalent aromatic core and rigid ethynyl units locked in place by ether connections were developed based upon the divergent synthetic method. Alternating functional groups were adopted on each site of the hexa-substituted benzene, in order to avoid undesired cyclization pathways. The flat structures of conjugated dendrimers would allow investigation on the discotic liquid crystal properties. In addition, these ethylnyl dendrimers are expected to show directed energy and electron transfer with a highly conjugated system, and thus are effective in the preparation of photoreactive materials such as electronic sensors or light harvesting materials. Conjugated polycyclic aromatic hydrocarbons, consisting of naphthalene, anthracene, pyrene, and phenanthrene groups connected via 1,3,5-triethynylbenzene cores, were synthesized. These molecules exhibited luminescence properties and the π-complexation with a mercury trifunctional lewis acid are expected to enhance the phosphorescence in the presence of the heavy metal due to the spin-orbit coupling. Besides, owing to the presence of heavy metal atom in the Au (I) complexes linked by s-bonded triethynyltriphenylene luminophore, the phosphorescence occurs from a metal-centered emission. The conjugated organic luminophores have been developed to produce excellent quantum efficiencies, brightness, and long lifetimes.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc9768 |
Date | 12 1900 |
Creators | Jung, Jiyoung |
Contributors | Selby, Trent, Omary, Mohammad, Richmond, Michael G., Acree, William E. (William Eugene) |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Copyright, Jung, Jiyoung, Copyright is held by the author, unless otherwise noted. All rights reserved. |
Page generated in 0.0019 seconds