This dissertation focuses on the use of novel polyethers and polydimethylsiloxanes in the stabilization of magnetite nanoparticles as well as biomedical applications. The colloidal stabilities of magnetite nanoparticles coated with polyethers containing various functional endgroups were studied. Different variables (e.g. polymer loading, polyether molecular weight and type of functional anchor group) were investigated to determine their effect on the long-term physiological stability of the polyether magnetite complexes.
One-part PDMS-magnetite nanoparticle fluids were synthesized using a high shear process and magnetic separation techniques. These one-part fluids are unique in the fact that they do not require the addition of a non-functional PDMS oligomer solvent to generate a magnetic hydrophobic fluid. A series of PDMS-magnetite nanoparticle fluids containing different molecular weight stabilizers were synthesized. A magnetic separation study was performed to determine if PDMS molecular weight influences the magnetic separation profiles of the fluids.
Well-defined PDMS-b-PtBA and PDMS-b-poly(acrylic acid) copolymers were synthesized using living free radical techniques from novel PDMS precursors as well as PDMS-based ionenes with different hard segment groups. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/26290 |
Date | 13 March 2009 |
Creators | Goff, Jonathan |
Contributors | Macromolecular Science and Engineering, Riffle, Judy S., Dailey, J. P., Davis, Richey M., McGrath, James E., Esker, Alan R. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | JDG-Dissertation-031209.pdf |
Page generated in 0.0013 seconds