Return to search

Structure/property behavior of inorganic/organic sol-gel derived hybrid materials

A novel class of inorganic/ organic hybrid materials referred to as CERAMERs have been successfully prepared by a sol-gel process using a polymeric acid catalyst, poly(styrene sulfonic acid), to form a network from tetraethylorthosilicate (TEOS) and triethoxysilane end capped oligomers of poly( tetramethylene oxide) (PTMO). The structure-property relationships were determined for these hybrid networks from their dynamic mechanical behavior, mechanical properties, and SAXS behavior. Thermal gravimetric data coupled with FfIR analysis were used to obtain a qualitative measure of the extent of conversion of the metal alkoxides as a function of acid catalyst.

Another new class of CERAMERs was successfully developed by the sol-gel processing of three different metal alkoxides in conjuction with the triethoxy silane end capped PTMO oligomers. The first novel hybrid is based upon complexes of aluminum tri-n-butoxide with ethyl acetoacetonate or titanium tetra-iso-propoxide with ethyl acetoacetate reacted with the triethoxysilane end capped PTMO. The hybrid networks were optically clear and could be easily formed as relatively large monoliths. A novel method of preparation of stable sols without the use of ethyl acetoacetate, developed by Dr. Bing Wang in this laboratory, led to more stable CERAMERS of titanium tetra-iso-propoxide (TiOPr) reacted with the functionalized P'TMO as well as a fourth inorganic/organic hybrid material based upon zirconium tetra-n-propoxide and PTMO. Indeed, the mechanical properties of the

TiOPr/P'TMO CERAMERs and ZrOPr/P'TMO CERAMERs were significantly enhanced over the TEOS/PTMO CERAMERs in terms of both Young's modulus and stress at break. The structure-property relationships of these materials were adequately described by the morphological model originally developed for the CERAMERs based upon TEOS/PTMO. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/39379
Date16 September 2005
CreatorsBrennan, Anthony Bartholomew
ContributorsMaterials Engineering Science, Wilkes, Garth L., David, Mark E., King, Russell K., McGrath, James E., Ward, Thomas C.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeDissertation, Text
Formatxv, 354 leaves, BTD, application/pdf, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationOCLC# 23674077, LD5655.V856_1990.B746.pdf

Page generated in 0.0026 seconds