A novel class of inorganic/ organic hybrid materials referred to as CERAMERs have been successfully prepared by a sol-gel process using a polymeric acid catalyst, poly(styrene sulfonic acid), to form a network from tetraethylorthosilicate (TEOS) and triethoxysilane end capped oligomers of poly( tetramethylene oxide) (PTMO). The structure-property relationships were determined for these hybrid networks from their dynamic mechanical behavior, mechanical properties, and SAXS behavior. Thermal gravimetric data coupled with FfIR analysis were used to obtain a qualitative measure of the extent of conversion of the metal alkoxides as a function of acid catalyst.
Another new class of CERAMERs was successfully developed by the sol-gel processing of three different metal alkoxides in conjuction with the triethoxy silane end capped PTMO oligomers. The first novel hybrid is based upon complexes of aluminum tri-n-butoxide with ethyl acetoacetonate or titanium tetra-iso-propoxide with ethyl acetoacetate reacted with the triethoxysilane end capped PTMO. The hybrid networks were optically clear and could be easily formed as relatively large monoliths. A novel method of preparation of stable sols without the use of ethyl acetoacetate, developed by Dr. Bing Wang in this laboratory, led to more stable CERAMERS of titanium tetra-iso-propoxide (TiOPr) reacted with the functionalized P'TMO as well as a fourth inorganic/organic hybrid material based upon zirconium tetra-n-propoxide and PTMO. Indeed, the mechanical properties of the
TiOPr/P'TMO CERAMERs and ZrOPr/P'TMO CERAMERs were significantly enhanced over the TEOS/PTMO CERAMERs in terms of both Young's modulus and stress at break. The structure-property relationships of these materials were adequately described by the morphological model originally developed for the CERAMERs based upon TEOS/PTMO. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/39379 |
Date | 16 September 2005 |
Creators | Brennan, Anthony Bartholomew |
Contributors | Materials Engineering Science, Wilkes, Garth L., David, Mark E., King, Russell K., McGrath, James E., Ward, Thomas C. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Dissertation, Text |
Format | xv, 354 leaves, BTD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | OCLC# 23674077, LD5655.V856_1990.B746.pdf |
Page generated in 0.0026 seconds