Ce mémoire porte principalement sur la synthèse et l'étude d'une nouvelle famille de polymères π-conjugués à base de l'unité 3,8-dibromo-5H-phénanthridin-6-one (PTD) pour des applications en cellules solaires organiques. Tout d'abord, deux voies de synthèse ont été employées afin d'obtenir deux monomères différents. Ces derniers ont été copolymérisés par poly(hétéro)arylation directe (DHAP) avec le 3,6-bis(thiophén-2-yl)-2,5-bis(2-octyldodécyl)-pyrrolo[3,4-c]p yrrole-1,4-dione (DPP) afin d'obtenir deux copolymères alternés ainsi qu'un terpolymère statistique. Les polymères ont aussi été synthétisés par couplage croisé de Suzuki afin de comparer les performances des matériaux synthétisés par les deux voies de synthèse. La caractérisation des propriétés optiques et électrochimiques a permis d'établir que ces polymères pourraient être de bons candidats dans un dispositif photovoltaïque. Les trois polymères obtenus ont donc été testés dans un dispositif photovoltaïque. Les deux copolymères alternés ont démontré des efficacités de conversion énergétique d'environ 4 %, alors qu'avec une optimisation rigoureuse du dépôt de la couche active du terpolymère, une efficacité de conversion énergétique maximale de 6,7 % a été atteinte avec le PC61BM comme accepteur. De plus, afin de limiter l'impact sur l'environnement que pourrait avoir une future production, les solvants chlorés ont été remplacés par l'o-xylène. Avec ce solvant, une efficacité de 5,8 % a été obtenue, ce qui est dans les meilleures valeurs rapportées dans la littérature avec un solvant non chloré. Dans le but de se rapprocher de la mise en œuvre industrielle à roulement, le dépôt par étalement a été employé grâce à une collaboration avec l'Institut de Recherche d'Hydro-Québec (IREQ). Une efficacité maximale de 5,0 % a été obtenue pour une cellule de 1 cm² avec un solvant de dépôt chloré et 4,7 % avec l'o-xylène. / This essay deals mostly with the study and the synthesis of new π-conjugated polymers based on the 3,8-dibromo-5H-phenanthridin-6-one (PTD) for application in organic solar cells. First, two synthetic schemes have been used in order to obtain the PTD before it can be alkylated. Once the alkylated compounds are obtained, those are going to be copolymerized with the 3,6-bis(thien-2-yl)-2,5-bis(2-octyldodecyl)-pyrrolo[3,4-c]pyrrol e-1,4-dione (DPP) by direct hetero arylation (DHAP). The two copolymers and the random terpolymer have also been synthesized by Suzuki-Miyaura cross-coupling in order to compare both the characteristics and the performances of the polymers. The polymers have been tested in a photovoltaic device. Both copolymers performed well with efficiencies achieving 4%. After a rigorous optimization of the preparation of the active layer, the terpolymer reached a high efficiency of 6.7% with PC61BM as the acceptor. In order to reduce the impact on the environment, the chlorinated solvents were replaced by o-xylene. With this solvent, the polymer P3 performed well with efficiencies reaching 5.8%, which is one of the highest in the literature. As the main goal of this research is to develop materials for the commercialization, blade coating was employed to process the active layer in air, thanks to our collaborator of the Institut de Recherche of Hydro-Québec (IREQ). The highest efficiency achieved was 5.0% with the use of a chlorinated solvent and 4.7% with the use of o-xylene. To results makes this material a promising one for a lab-scale processes transfer to an semi-industrial fabrication.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/27500 |
Date | 24 April 2018 |
Creators | Guérette, Maxime |
Contributors | Leclerc, Mario |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | mémoire de maîtrise, COAR1_1::Texte::Thèse::Mémoire de maîtrise |
Format | 1 ressource en ligne (iii, 135 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0023 seconds