Le stockage de l'énergie est l'un des enjeux les plus cruciaux du 21e siècle. Le développement de matériaux abordables qui possèdent une grande densité d'énergie et qui affichent une grande stabilité est recherché. Une demande croissante venant du domaine de l'électronique portative fait pression sur la recherche de matériaux toujours plus performants. L'émergence des ordinateurs et téléphones portatifs ainsi que des véhicules électriques est la pièce maitresse de cette révolution. Par ailleurs, le stockage de l'énergie dans des batteries géantes, mais stationnaires, permettra au cours des prochaines années de pallier à la réalité de production d'énergie fluctuante du solaire et de l'éolien au cours d'une journée. La batterie Li-ion est présentement la technologie la plus mature pour mener à ce type de réalisation. L'atome de lithium est pourvu d'une petite masse molaire et l'ion lithium possède un petit rayon ionique. Utilisé à l'anode, le lithium permet d'y avoir une grande densité d'énergie, puis une faible résistance ionique dans l'électrolyte une fois oxydé. Par contre, les batteries Li-ion d'aujourd'hui reposent sur des matériaux de cathode dispendieux comme le cobalt, le nickel et le manganèse, dont l'exploitation soulève de grandes questions environnementales et éthiques. Avec une demande croissante pour des batteries de haute performance, des matériaux de cathode abordables, renouvelables et avec un impact environnemental faible doivent être développés. Dans ce contexte, les molécules organiques qui ont une activité redox ont attiré l'attention avec un faible cout de production, une faible toxicité et une abondance naturelle élevée. Parmi les différents groupements fonctionnels démontrant une activité rédox, les groupements carbonylés se démarquent par leur grande diversité, et leur stabilité à l'état réduit. Les matériaux redox typiques contenant des carbonyles sont les quinones, les 1,2-diones et les imides qui reposent sur un mécanisme d'énolisation lors du processus de réduction. La principale limitation que présentent ces molécules est la dissolution dans l'électrolyte. La formation d'un sel organique ou l'incorporation de la molécule électroactive au sein d'un polymère inerte sont des stratégies qui ont été apportées pour pallier à ce problème. La versatilité des molécules possédant des fonctions imides rend possible l'étude de plusieurs polymères π-conjugués qui ont l'avantage de pouvoir conduire davantage les charges injectées. Dans le cadre de ces travaux de doctorat, l'objectif général était de synthétiser de nouveaux polymères π-conjugués contenant des fonctions imides et d'analyser leurs performances en tant que matériau actif de cathode en batterie Li-ion. Les molécules qui ont été étudiées sont le maléimide, le pyromellitique diimide et le pyrène diimide. Des polymères π-conjugués ont été synthétisés avec ces unités en utilisant les techniques d'Ullmann, de Stille, de Suzuki ou d'arylation directe.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/69504 |
Date | 10 February 2024 |
Creators | Zindy, Nicolas |
Contributors | Leclerc, Mario |
Source Sets | Université Laval |
Language | French |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xxi, 289 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0023 seconds